dc.creatorZambom A.Z.
dc.creatorAkritas M.G.
dc.date2015
dc.date2015-06-25T12:54:13Z
dc.date2015-11-26T15:15:18Z
dc.date2015-06-25T12:54:13Z
dc.date2015-11-26T15:15:18Z
dc.date.accessioned2018-03-28T22:25:08Z
dc.date.available2018-03-28T22:25:08Z
dc.identifier
dc.identifierJournal Of Multivariate Analysis. Academic Press Inc., v. 133, n. , p. 51 - 60, 2015.
dc.identifier0047259X
dc.identifier10.1016/j.jmva.2014.08.014
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84907970195&partnerID=40&md5=7bbb1569371d1164557b05f3351b4f60
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85567
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85567
dc.identifier2-s2.0-84907970195
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258987
dc.descriptionIn the context of a heteroscedastic nonparametric regression model, we develop a test for the null hypothesis that a subset of the predictors has no influence on the regression function. The test uses residuals obtained from local polynomial fitting of the null model and is based on a test statistic inspired from high-dimensional analysis of variance. Using p-values from this test, and multiple testing ideas, a group variable selection method is proposed, which can consistently select even groups of variables with diminishing predictive significance. A backward elimination version of this procedure, called GBEAMS for Group Backward Elimination Anova-type Model Selection, is recommended for practical applications. Simulation studies, suggest that the proposed test procedure outperforms the generalized likelihood ratio test when the alternative is non-additive or there is heteroscedasticity. Additional simulation studies reveal that the proposed group variable selection procedure performs competitively against other variable selection methods, and outperforms them in selecting groups having nonlinear or dependent effects. The proposed group variable selection procedure is illustrated on a real data set.
dc.description133
dc.description
dc.description51
dc.description60
dc.descriptionAbramovich, F., Benjamini, Y., Donoho, D.L., Johnstone, I.M., Adapting to unknown sparsity by controlling the false discovery rate (2006) Ann. Statist., 34, pp. 584-653
dc.descriptionAkritas, M.G., Papadatos, N., Heteroscedastic one-way ANOVA and lack-of-fit tests (2004) J. Amer. Statist. Assoc., 99, pp. 368-382
dc.descriptionAlon, U., Barkai, N., Notterdam, D., Gish, K., Ybarra, S., Mack, D., Levine, A., Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays (1999) Proc. Natl. Acad. Sci., 96, pp. 6745-6750
dc.descriptionBair, E., Hastie, T., Paul, D., Tibshirani, R., Prediction by supervised principal components (2006) J. Amer. Statist. Assoc., 101, pp. 119-137
dc.descriptionBenjamini, Y., Gavrilov, Y., A simple forward selection procedure based on false discovery rate control (2009) Ann. Appl. Stat., 3, pp. 179-198
dc.descriptionBenjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995) J. R. Stat. Soc. Ser. B, 57, pp. 289-300
dc.descriptionBenjamini, Y., Krieger, A.M., Yekutieli, D., Adaptive linear step-up procedures that control the false discovery rate (2006) Biometrika, 93, pp. 491-507
dc.descriptionBenjamini, Y., Yekutieli, D., The control of the false discovery rate in multiple testing under dependency (2001) Ann. Statist., 29, pp. 1165-1188
dc.descriptionBunea, F., Wegkamp, M., Auguste, A., Consistent variable selection in high dimensional regression via multiple testing (2006) J. Statist. Plann. Inference, 136, pp. 4349-4364
dc.descriptionCandes, E., Tao, T., The Dantzig selector: statistical estimation when p is much larger than n (2007) Ann. Statist., 35, pp. 2313-2351
dc.descriptionDettling, M., Bhlmann, P., Supervised clustering of genes (2002) Genome Biol., 3 (12). , research0069.1-0069.15
dc.descriptionDettling, M., Bhlmann, P., Finding predictive gene groups from microarray data (2004) J. Multivariate Anal., 90, pp. 106-131
dc.descriptionEfron, B., Hastie, T., Johnstone, I., Tibshirani, R., Least angle regression (2004) Ann. Statist., 32, pp. 407-499
dc.descriptionFan, J., Jiang, J., Nonparametric inferences for additive models (2005) J. Amer. Statist. Assoc., 100, pp. 890-907
dc.descriptionFan, J., Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties (2001) J. Amer. Statist. Assoc., 96, pp. 1348-1360
dc.descriptionHall, P., On projection pursuit regression (1989) Ann. Statist., 17, pp. 573-588
dc.descriptionHuang, J., Horowitz, J.L., (2010) Variable selection in nonparametric additive models, , http://faculty.wcas.northwestern.edu/~jlh951/papers/HHW-npam.pdf
dc.descriptionLi, K.C., Sliced inverse regression for dimension reduction (1991) J. Amer. Statist. Assoc., 86, pp. 316-327
dc.descriptionLi, L., Cook, R.D., Nachtsheim, C., Model-free variable selection (2005) J. R. Stat. Soc. Ser. B, 67, pp. 285-299
dc.descriptionLi, R., Liang, H., Variable selection in semiparametric regression modeling (2008) Ann. Statist., 36, pp. 261-286
dc.descriptionMa, S., Song, X., Huang, J., Supervised group Lasso with applications to microarray data analysis (2007) BMC Bioinform., 8, p. 60
dc.descriptionMasry Multivariate local polynomial regression for time series: uniform strong consistency rates (1996) J. Time Ser. Anal., 17, pp. 571-599
dc.descriptionPark, M.Y., Hastie, T., Tibshirani, R., Averaged gene expressions for regression (2007) Biostatistics, 8, pp. 212-227
dc.descriptionRice, J., Bandwidth choice for nonparametric regression (1984) Ann. Statist., 12, pp. 1215-1230
dc.descriptionStorlie, C.B., Bondell, H.D., Reich, B.J., Zhang, H.H., Surface estimation, variable selection, and the nonparametric oracle property (2011) Statist. Sinica, 21, pp. 679-705
dc.descriptionTibshirani, R., Regression shrinkage and selection via the Lasso (1996) J. R. Stat. Soc. Ser. B, 58, pp. 267-288
dc.descriptionTibshirani, R., Knight, K., The covariance inflation criterion for adaptive model selection (1999) J. R. Stat. Soc. Ser. B, 61, pp. 529-546
dc.descriptionWang, L., Akritas, M.G., Keilegom, I.V., An ANOVA-type nonparametric diagnostic test for heteroscedastic regression models (2008) J. Nonparametr. Stat., 20, pp. 365-382
dc.descriptionWang, H., Xia, Y., Shrinkage estimation of the varying coefficient model (2008) J. Amer. Statist. Assoc., 104, pp. 747-757
dc.descriptionXia, Y., A multiple-index model and dimension reduction (2008) J. Amer. Statist. Assoc., 103, pp. 1631-1640
dc.descriptionYeh, Y.-R., Huang, S.-U., Lee, Y.-J., Nonlinear dimension reduction with kernel sliced inverse regression (2009) IEEE Trans. Knowl. Data Eng., 21, pp. 1590-1603
dc.descriptionYuan, M., Lin, Y., Model selection and estimation in regression with grouped variables (2006) J. R. Stat. Soc. Ser. B, 68, pp. 49-67
dc.descriptionZambom, A.Z., (2012) Hypothesis testing and variable selection in nonparametric regression, , (Doctoral dissertation), Department of Statistics, Penn State University
dc.descriptionZambom, A.Z., Akritas, M., Nonparametric lack-of-fit testing and consistent variable selection (2014) Statist. Sinica, 24, pp. 1837-1858
dc.descriptionZhu, H., Li, L., Biological pathway selection through nonlinear dimension reduction (2011) Biostatistics, 12, pp. 429-444
dc.descriptionZou, H., The adaptive lasso and its oracle properties (2006) J. Amer. Statist. Assoc., 101, pp. 1418-1429
dc.languageen
dc.publisherAcademic Press Inc.
dc.relationJournal of Multivariate Analysis
dc.rightsfechado
dc.sourceScopus
dc.titleNonparametric Significance Testing And Group Variable Selection
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución