dc.creatorMuraca D.
dc.creatorOdio O.F.
dc.creatorReguera E.
dc.creatorPirota K.R.
dc.date2013
dc.date2015-06-25T19:17:18Z
dc.date2015-11-26T15:15:13Z
dc.date2015-06-25T19:17:18Z
dc.date2015-11-26T15:15:13Z
dc.date.accessioned2018-03-28T22:25:03Z
dc.date.available2018-03-28T22:25:03Z
dc.identifier
dc.identifierIeee Transactions On Magnetics. , v. 49, n. 8, p. 4606 - 4609, 2013.
dc.identifier189464
dc.identifier10.1109/TMAG.2013.2259148
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84881048801&partnerID=40&md5=068b4223465bdfb1b46f159b916d6d71
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89531
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89531
dc.identifier2-s2.0-84881048801
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258965
dc.descriptionOptical, magnetic and structural properties of one-step chemical decomposition approach Ag-Fe3O4 heterodimer structures are reported. We synthesized Ag-Fe3O4 nanoparticles where the Ag nanoparticles of less than 10 nm are physically attached to Fe 3O4 nanoparticles also less than 10 nm. The structural properties of the samples were characterized from X-ray diffraction (XRD) and transmission electron microscopy (TEM) data, which confirmed the existence of heterodimer structures in solution along with isolated magnetite nanoparticles. Optical properties of the obtained samples were studied using UV/vis spectra and compared with Fe3O4 reference nanoparticles in absence of metallic component. Magnetization hysteresis loops for the obtained samples along with Fe3O4 reference sample at 2 K (blocked regime), 50 K (intermediate regime) and 300 K (superparamagnetic regime) and with maximum applied field of ± 20 kOe were performed and correlated to the structural data. Also, magnetization versus temperature curves (Field Cooling-Zero Field Cooling) with static magnetic field of 50 Oe were measured, from which the blocking temperature of the heterodimer sample was about 77 K and for the reference less than 20 K. © 1965-2012 IEEE.
dc.description49
dc.description8
dc.description4606
dc.description4609
dc.descriptionJain, P.K., El Sayed, I.H., El Sayed, M.A., Au nanoparticles target cancer (2007) Nanotoday, V21, p. 18
dc.descriptionArruebo, M., Ferńndez-Pacheco, R., Ibarra, M.R., Santamaría, J., Magnetic nanoparticles for drug delivery (2007) Nanotoday, 2 (3), p. 22
dc.descriptionPankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J., Applications of magnetic nanoparticles in biomedicine (2003) J. Phys. D: App. Phys., 36, pp. R167
dc.descriptionLee, H., Jang, J.T., Choi, J.S., Moon, S.H., Noh, S.H., Kim, J.W., Kim, J.G., Cheon, J., Exchange-coupled magnetic nanoparticles for efficient heat induction (2011) Nat. Nanot., 6, p. 418
dc.descriptionWang, C., Yin, H.F., Dai, S., Sun, S., A general approach to noble Metal-Oxide dumbbell nanoparticles and their catalytic application for CO oxidation (2010) Chem. Mater., 22, p. 3277
dc.descriptionLopes, G., Vargas, J.M., Sharma, S.K., Béron, F., Pirota, K.R., Knobel, M., Rettori, C., Zysler, R.D.J., Ag-Fe O dimer colloidal nanoparticles: Synthesis and enhancement of magnetic properties (2010) Phys. Chem., C114, p. 10148
dc.descriptionMuraca, D., Sharma, S.K., Socolovsky, L.M., De Siervo, A., Lopes, G., Pirota, K.R., Influence of silver concentrations on structural and magnetic properties of Ag-Fe O heterodimer nanoparticles (2012) J. Nanosci. Nanotech., 12, p. 6961
dc.descriptionHuang, J., Sun, Y., Huang, S., Yu, K., Zhao, Q., Peng, F., Yu, H., Yang, J., (2011) J. Mater. Chem, 21, p. 17930
dc.descriptionJones, M.R., Osberg, K.D., Macfarlane, R.J., Langille, M.R., Mirkin, C.A., Templated techniques for the synthesis and assembly of plasmonic nanostructures (2011) Chem. Rev., 111, p. 3736
dc.descriptionLin, X.Z., Teng, X., Yang, H., Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor (2003) Langmuir, 19, p. 10081
dc.descriptionMayer, K.M., Hafner, J.H., Localized surface plasmon resonance sensors (2011) Chem. Rev., 111, p. 3828
dc.descriptionLermé, J., Size evolution of the surface plasmon resonance damping in silver nanoparticles: Confinement and dielectric effects (2011) J. Phys. Chem. C, 115, p. 14098
dc.descriptionWiley, B.J., Sang, H.I., Zhi-Yuan, L., McLellan, J., Siekkinen, A., Younan, X., Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis (2006) J. Phys. Chem. B., 110, p. 15666
dc.descriptionGoya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P., Static and dynamic magnetic properties of spherical magnetite nanoparticles (2003) J. Appl. Phys., 94 (3520)
dc.descriptionMorales, M.P., Veintemillas-Verdaguer, S., Montero, M.I., Serna, C.J., Surface and internal spin canting in -Fe O nanoparticles (1999) Chem. Mater., 11, p. 3058
dc.descriptionMuraca, D., De Siervo, A., Pirota, K.R., From quenched to unquenched orbital magnetic moment on metallic-oxide nanoparticles: DC magnetic properties and electronic correlation (2013) J. Nanopart. Res., 15, p. 1375
dc.languageen
dc.publisher
dc.relationIEEE Transactions on Magnetics
dc.rightsfechado
dc.sourceScopus
dc.titleOne Step Chemical Synthesis Of Ag-fe3o4 Heterodimer Nanoparticles: Optical, Structure, And Magnetic Properties
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución