dc.creatorFernandes I.L.
dc.creatorCabrera G.G.
dc.date2013
dc.date2015-06-25T19:16:31Z
dc.date2015-11-26T15:14:38Z
dc.date2015-06-25T19:16:31Z
dc.date2015-11-26T15:14:38Z
dc.date.accessioned2018-03-28T22:24:38Z
dc.date.available2018-03-28T22:24:38Z
dc.identifier
dc.identifierIeee Transactions On Magnetics. , v. 49, n. 12, p. 5635 - 5638, 2013.
dc.identifier189464
dc.identifier10.1109/TMAG.2013.2272214
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84890096873&partnerID=40&md5=0f9e8e221f52147768be92b039c2fee5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89487
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89487
dc.identifier2-s2.0-84890096873
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258881
dc.descriptionIn this work, we theoretically study the spin-dependent transport in a magnetic tunnel junction (MTJ). Using a simple model and ballistic transport, the magnetic polarization of the tunneling current on this system is studied by focusing on the tunneling of s and d electrons. We investigate the tunneling of these electrons through potential barriers, which represents the insulating layer between the ferromagnetic electrodes. We also examine how the conductance depends on voltage applied between the electrodes and on the effective mass of the electrons. The conductance is controlled by the transmission coefficient of the tunnel effect, and qualitatively it is known that tunneling probability of the d electrons is lower than the s electrons. We also estimate the effect of the tunneling magnetoresistance (TMR) and it is strongly influenced by the effective mass of the electrons. The s electrons do not contribute significantly to the TMR. © 1965-2012 IEEE.
dc.description49
dc.description12
dc.description5635
dc.description5638
dc.descriptionPrinz, G.A., Magnetoelectronics (1998) Science, 282 (5394), pp. 1660-1663
dc.descriptionWolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Spintronics: A spin-based electronics vision for the future (2001) Science, 294 (5546), pp. 1488-1495. , DOI 10.1126/science.1065389
dc.descriptionTsymbal, E.Y., Mryasov, O.N., Leclair, P.R., Spin-dependent tunnelling in magnetic tunnel junctions (2003) J. Phys.: Condens. Matter, 15 (4), pp. R109
dc.descriptionLi, Y., Qian, F., Xiang, J., Lieber, C.M., Nanowire electronic and optoelectronic devices (2006) Materials Today, 9 (10), pp. 18-27. , DOI 10.1016/S1369-7021(06)71650-9, PII S1369702106716509
dc.descriptionKokado, S., Harigaya, K., A theoretical investigation of ferromagnetic tunnel junctions with 4-valued conductances (2003) J. Phys.: Condens. Matter, 15 (50), p. 8797
dc.descriptionJulliere, M., Tunneling between ferromagnetic films (1975) Phys. Lett. A, 54 (3), pp. 225-226
dc.descriptionMoodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R., Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions (1995) Phys. Rev. Lett, 74 (16), pp. 3273-3276. , Ar
dc.descriptionLandauer, R., Electrical resistance of disordered one-dimensional lattices (1970) Philos. Mag, 21 (172), pp. 1478-6435. , Nov
dc.descriptionCallaway, J., Wang, C.S., Energy bands in ferromagnetic iron (1977) Phys. Rev. B, 16 (5), pp. 2095-2105. , Sep
dc.descriptionBratkovsky, A.M., Tunneling of electrons in conventional and halfmetallic systems: Towards very large magnetoresistance (1997) Phys. Rev. B, 56 (5), p. 2344
dc.descriptionAshcroft, N.W., Mermin, D.N., (1976) Solid State Physics, , 1st ed. Toronto, ON, Canada: Thomson Learning
dc.languageen
dc.publisher
dc.relationIEEE Transactions on Magnetics
dc.rightsfechado
dc.sourceScopus
dc.titleMagnetic Polarization Of The Tunneling Current
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución