dc.creatorPerim E.
dc.creatorPaupitz R.
dc.creatorAutreto P.A.S.
dc.creatorGalvao D.S.
dc.date2013
dc.date2015-06-25T19:16:11Z
dc.date2015-11-26T15:14:11Z
dc.date2015-06-25T19:16:11Z
dc.date2015-11-26T15:14:11Z
dc.date.accessioned2018-03-28T22:24:17Z
dc.date.available2018-03-28T22:24:17Z
dc.identifier9781605115269
dc.identifierMaterials Research Society Symposium Proceedings. Materials Research Society, v. 1549, n. , p. 91 - 98, 2013.
dc.identifier2729172
dc.identifier10.1557/opl.2013.793
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84898410092&partnerID=40&md5=439c9eb8ec88c89d46298dd93941d6a5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89428
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89428
dc.identifier2-s2.0-84898410092
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258816
dc.descriptionHexagonal boron nitride (h-BN), also known as white graphite, is the inorganic analogue of graphite. Single layers of both structures have been already experimentally realized. In this work we have investigated, through fully atomistic reactive molecular dynamics simulations, the dynamics of hydrogenation of h-BN single-layers membranes. Our results show that the rate of hydrogenation atoms bonded to the membrane is highly dependent on the temperature and that only at low temperatures there is a preferential bond to boron atoms. Unlike graphanes (hydrogenated graphene), hydrogenated h-BN membranes do not exhibit the formation of correlated domains. Also, the out-of-plane deformations are more pronounced in comparison with the graphene case. After a critical number of incorporated hydrogen atoms the membrane become increasingly defective, lost its two-dimensional character and collapses. The hydrogen radial pair distribution and second-nearest neighbor correlations were also analyzed. © 2013 Materials Research Society.
dc.description1549
dc.description
dc.description91
dc.description98
dc.descriptionNovoselov, K.S., (2004) Science, 306, p. 666
dc.descriptionCheng, S.H., (2010) Phys. Rev. B, 81, p. 205435
dc.descriptionWithers, F., Duboist, M., Savchenko, A.K., (2010) Phys. Rev. B, 82, p. 073403
dc.descriptionSofo, J.O., Chaudari, A.S., Barber, G.D., (2007) Phys. Rev. B, 75, p. 153401
dc.descriptionElias, D.C., (2009) Science, 323, p. 610
dc.descriptionFlores, M.Z.S., Autreto, P.A.S., Legoas, S.B., Galvao, D.S., (2009) Nanotechnology, 20, p. 465704
dc.descriptionNair, R.R., (2010) Small, 6, p. 2773
dc.descriptionPaupitz, R., Autreto, P.A.S., Legoas, S.B., Srinivasan, S.G., Van Duin, A.C.T., Galvao, D.S., (2013) Nanotechnology, 24, p. 035706
dc.descriptionJin, C., Lin, F., Suenaga, K., Lijima, S., (2009) Phys. Rev. Lett., 102, p. 19
dc.descriptionMeyer, J.C., Chuvulin, A., Algara-Siller, G., Biskupek, J., Kaiser, U., (2009) Nano Lett., 9, p. 2683
dc.descriptionSong, L., (2010) Nano Lett., 10, p. 5049
dc.descriptionVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard III, W.A., (2001) J. Phys. Chem. A, 105, p. 9396
dc.descriptionVan Duin, A.C.T., Damste, J.S.S., (2003) Org. Geochem., 34, p. 515
dc.descriptionHan, S.S., Kang, J.K., Lee, H.M., Van Duin, A.C.T., Goddard III, W.A., (2005) J. Chem. Phys., 123, p. 114703
dc.descriptionPlimpton, S., (1995) J. Comp. Phys., 117, p. 1. , http://lammps.sandia.gov/
dc.descriptionDos Santos, R.P.B., Perim, E., Autreto, P.A.S., Brunetto, G., Galvao, D.S., (2012) Nanotechnology, 23, p. 465702
dc.languageen
dc.publisherMaterials Research Society
dc.relationMaterials Research Society Symposium Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleThe Hydrogenation Dynamics Of H-bn Sheets
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución