Artículos de revistas
From Waste-to-energy: The Process Integration And Intensification For Bulk Oil And Biodiesel Production By Microalgae
Registro en:
Journal Of Environmental Chemical Engineering. Elsevier Ltd, v. 3, n. 1, p. 482 - 487, 2015.
22133437
10.1016/j.jece.2014.12.017
2-s2.0-84922355462
Autor
Francisco E.C.
Franco T.T.
Zepka L.Q.
Jacob-Lopes E.
Institución
Resumen
The aim of this work was to evaluate the bulk oil and biodiesel production by cyanobacteria Phormidium sp. using cassava wastewater as culture medium. The study focused on optimization of the cultivation parameters (temperature and C/N ratio), on the evaluation of different operational modes of bioreactor (batch, fed-batch and continuous) and on the analysis of the biofuel quality. The results indicate that temperatures of 30°C and C/N ratio of 68 improved the performance of system. Additionally, the continuous cultivation optimizes the rate of formation of product, reaching biomass productivities of 320.1 mg/L h in parallel to oil productivities of 43.8 mg/L h. Finally, the fuel properties of the biodiesel indicated an ester content of 99.98%, a cetane number of 57.28, an iodine value of 45.22 gl2 100 g-1, a degree of unsaturation of 49.27%, and a cold filter plugging point of 61.43 °C. The technological route developed indicates potential to sustainable production of bulk oil and biodiesel, through the minimization of water and chemicals demand needed to support such bioprocess. 3 1 482 487 Wohlgemuth, R., The locks and keys to industrial biotechnology (2009) New Biotechnol., 25 (4), pp. 204-213. , http://dx.doi.org/10.1016/j.nbt.2009.01.002.19429540 Clark, J., Deswarte, F., Farmer, T., The integration of green chemistry into future biorefineries (2009) Biofuels Bioprod. Biorefin., 3 (1), pp. 72-90. , http://dx.doi.org/10.1002/bbb.119 Charpentier, J.C., Process intensification by miniaturization (2005) Chem. Eng. Technol., 28 (3), pp. 255-258. , http://dx.doi.org/10.1002/ceat.200407026 Jacob-Lopes, E., Franco, T.T., From oil refinery to microalgal biorefinery (2013) J. CO2 Util., 2, pp. 1-7. , http://dx.doi.org/10.1016/j.jcou.2013.06.001 Queiroz, M.I., Hornes, M.O., Da Silva-Manetti, A.G., Jacob-Lopes, E., Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater (2011) Appl. Energy, 88 (10), pp. 3438-3443. , http://dx.doi.org/10.1016/j.apenergy.2010.12.047 Lu, Y., Zhai, Y., Liu, M., Wu, Q., Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock (2010) J. Appl. Phycol., 22 (5), pp. 573-578. , http://dx.doi.org/10.1007/s10811-009-9496-8 Queiroz, M.I., Hornes, M.O., Manetti, A.G.S., Zepka, L.Q., Jacob-Lopes, E., Fish processing wastewater as a platform of the microalgal biorefineries (2013) Biosyst. Eng., 115 (2), pp. 195-202. , http://dx.doi.org/10.1016/j.biosystemseng.2012.12.013 (2013) FAO Statistical Yearbook, , World Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome Subhadra, B.G., Edwards, M., Coproduct market analysis and water footprint of simulated commercial algal biorefineries (2011) Appl. Energy, 88 (10), pp. 3515-3523. , http://dx.doi.org/10.1016/j.apenergy.2010.12.051 Shirazi, M.J.A., Bazgir, S., Shirazi, M.M.A., Edible oil mill effluent a low-cost source for economizing biodiesel production: Electrospun nanofibrous coalescing filtration approach (2014) Biofuel Res. J., 1, pp. 39-42 Shirazi, M.M., Kargari, A., Tabatabaei, M., Mostafaeid, B., Akia, M., Barkhi, M., Shirazi, M.J., Acceleration of biodiesel-glycerol decantation through NaCl-assisted gravitational settling: A strategy to economize biodiesel production (2013) Bioresour. Technol., 134, pp. 401-406. , http://dx.doi.org/10.1016/j.biortech.2013.02.026.23499494 Noureddin, A., Shirazi, M.M.A., Tofeily, J., Kazemi, P., Motaee, E., Kargari, A., Mostafaei, M., Tabatabaei, M., Accelerated decantation of biodiesel-glycerol mixtures: Optimization of a critical stage in biodiesel biorefinery (2014) Sep. Purif. Technol., 132, pp. 272-280. , http://dx.doi.org/10.1016/j.seppur.2014.05.011 APhA, AWWA, WEF (Amer. Pub. Hlth. Assoc., Amer. Water Works Assoc., Water Environ. Federation), (2005) Standard Methods for the Examination of Water and Wastewater, Twenty-first Ed., , Prot City Press, Baltimore, Maryland AOAC, (2003) Official Method of Analysis of the Association of Official Agricultural Chemists, 17th Ed., , AOAC International, Gaitherburg, United States of America Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y., Generic assignments, strain histories and properties of pure cultures of cyanobacteria (1979) J. Gen. Microbiol., 111 (1), pp. 1-61. , http://dx.doi.org/10.1099/00221287-111-1-1 (2004) STATISTICA for Windows [Computer Program Manual]., , http://www.statsoftinc.com, [online], StatSoft Inc., Tulsa, Oklahoma Francisco É., C., Franco, T.T., Wagner, R., Jacob-Lopes, E., Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria (2014) Bioprocess Biosyst. Eng., 37, pp. 1497-1505. , http://dx.doi.org/10.1007/s00449-013-1121-1.24445336 Bligh, E.G., Dyer, W.J., A rapid method of total lipid extraction and purification (1959) Can. J. Biochem. Physiol., 37 (8), pp. 911-917. , http://dx.doi.org/10.1139/o59-099 Hartman, L., Lago, R.C.A., A rapid determination of fatty acid methyl esters from lipids (1976) Lab. Practice, 22, pp. 475-476 Krisnangkura, K.A., Simple method for estimation of cetane index of vegetable oil methyl esters (1986) J. Am. Oil Chem. Soc., 63 (4), pp. 552-553. , http://dx.doi.org/10.1007/BF02645752 Ramos, M.J., Fernández, C.M., Casas, A., Rodríguez, L., Pérez, A., Influence of fatty acid composition of raw materials on biodiesel properties (2009) Bioresour. Technol., 100 (1), pp. 261-268. , http://dx.doi.org/10.1016/j.biortech.2008.06.039.18693011 Moulijn, J.A., Stankiewicz, A., Grievink, J., Górak, A., Process intensification and process systems engineering: A friendly symbiosis (2008) Comput. Chem. Eng., 32 (1-2), pp. 3-11. , http://dx.doi.org/10.1016/j.compchemeng.2007.05.014 Merchuk, J.C., Gluz, M., Mukmenev, I., Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp (2000) J. Chem. Technol. Biotechnol., 75, pp. 1119-1126. , http://dx.doi.org/10.1002/1097-4660(200012)75:12〈1119::AID-JCTB329〉3.3.CO;2-7 Xiong, W., Li, X., Xiang, J., Wu, Q., High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production (2008) Appl. Microbiol. Biotechnol., 78, pp. 29-36. , http://dx.doi.org/10.1007/s00253-007-1285-1.18064453 Gao, C., Zhai, Y., Ding, Y., Wu, Q., Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides (2010) Appl. Energy, 87 (3), pp. 756-761. , http://dx.doi.org/10.1016/j.apenergy.2009.09.006 Griffiths, M.J., Harrison, S.T.L., Lipid productivity as a key characteristic for choosing algal species for biodiesel production (2009) J. Appl. Phycol., 21 (5), pp. 493-507. , http://dx.doi.org/10.1007/s10811-008-9392-7 Francisco É., C., Neves, D.B., Jacob-Lopes, E., Franco, T.T., Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality (2010) J. Chem. Technol. Biotechnol., 85 (3), pp. 395-403. , http://dx.doi.org/10.1002/jctb.2338 Standard Specification for biodiesel Fuel (B100) (2002) Blend Stock for Distillate Fuels, , ASTM 6751 (2003) Provisional Brazilian Biodiesel Standard ANP (Agência Nacional Do Petróleo), , ANP 255