dc.creatorSeabra A.B.
dc.creatorDuran N.
dc.date2013
dc.date2015-06-25T19:16:03Z
dc.date2015-11-26T15:14:00Z
dc.date2015-06-25T19:16:03Z
dc.date2015-11-26T15:14:00Z
dc.date.accessioned2018-03-28T22:24:07Z
dc.date.available2018-03-28T22:24:07Z
dc.identifier
dc.identifierPeptides. , v. 39, n. 1, p. 47 - 54, 2013.
dc.identifier1969781
dc.identifier10.1016/j.peptides.2012.10.007
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84870204769&partnerID=40&md5=7a5e753c3c01f51310d5b9cc31b18362
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89394
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89394
dc.identifier2-s2.0-84870204769
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258774
dc.descriptionRecently, self-assemblies of peptide nanotubes (PNTs) have appeared as one of the most interesting nanostructures to be explored in the field of nanotechnology. These smart assemblies can have diverse applications, such as in the design of nanoreactors, sensors, electronics, and stimulus-responsive materials. Recent publications indicate that PNT synthesis and production are under extensive study. However, a more detailed safety and nanotoxicology evaluation of these materials is still necessary. This is of paramount importance since interesting and novel biomedical applications based on the use of PNTs, including the development of smart nanodevices and drug delivery systems, are under way. To this end, the aim of this mini-review is to discuss the recent biomedical applications of PNTs and, it hopes, to be a source of inspiration for researchers in different areas of expertise related to nanotechnology. © 2012 Elsevier Inc.
dc.description39
dc.description1
dc.description47
dc.description54
dc.descriptionAdler-Abramovich, L., Reches, M., Sedman, V.L., Allen, S., Tendler, S.J.B., Gazit, E., Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications (2006) Langmuir, 22, pp. 1313-1320
dc.descriptionAida, T., Meijer, E.W., Stupp, S.I., Functional supramolecular polymers (2012) Science, 335, pp. 813-817
dc.descriptionAndersen, K.B., Castillo-León, J., Bakmand, T., Svendsen, W.E., Alignment and use of self-assembled peptide nanotubes as dry-etching mask (2012) Japan J Appl Phys, 51, pp. 06FF13
dc.descriptionAndersen, K.B., Castillo-Leon, J., Hedstromb, M., Svendsen, W.E., Stability of diphenylalanine peptide nanotubes in solution (2011) Nanoscale, 3, pp. 994-998
dc.descriptionBanerjee, I.A., Yu, L., Matsui, H., Location-specific biological functionalization on nanotubes: Attachment of proteins at the ends of nanotubes using Au nanocrystal masks (2003) Nano Lett, 3, pp. 283-287
dc.descriptionBong, D.T., Clark, T.D., Granja, J.R., Ghadiri, M.R., Self-assembling organic nanotubes (2001) Angew Chem Int Ed, 40, pp. 988-1011
dc.descriptionBrea, R.J., Herranz, M.A., Sanchez, L., Castedo, L., Seitz, W., Guldi, D.M., Electron transfer in Me-blocked heterodimeric alpha, gamma-peptide nanotubular donor-acceptor hybrids (2007) Proc Natl Acad Sci USA, 104, pp. 5291-5294
dc.descriptionBrea, R.J., Vazquez, M.E., Mosquera, M., Castedo, L., Granja, J.R., Controlling multiple fluorescent signal output in cyclic peptide-based supramolecular (2007) J Am Chem Soc, 129, pp. 1653-1657
dc.descriptionCastillo, J., Tanzi, S., Dimaki, M., Svendsen, W., Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis (2008) Electrophoresis, 29, pp. 5026-5032
dc.descriptionCastillo-León, J., Rodriguez-Trujillo, R., Gauthier, S., Jensen, A.C.O., Svendsen, W.E., Micro-"factory" for self-assembled peptide nanostructures (2011) Microelectronic Eng, 88, pp. 1685-1688
dc.descriptionClausen, C.H., Dimaki, M., Panagos, S.P., Kasotakis, E., Mitraki, A., Svendsen, W.E., Electrostatic force microscopy of self-assembled peptide structures (2011) Scanning, 33, pp. 201-207
dc.descriptionClausen, C.H., Jensen, J., Castillo, J., Dimaki, M., Svendsen, W.E., Qualitative mapping of structurally different dipeptide nanotubes (2008) Nano Lett, 8, pp. 4066-4069
dc.descriptionCipriano, T.C., Takahashi, P.M., De Lima, D., Oliveira, Jr.V.X., Souza, J.A., Martinho, H., Spatial organization of peptide nanotubes for electrochemical devices (2010) J Mater Sci, 45, pp. 5101-5108
dc.descriptionChandra, S., De, K., Ganguly, S., Sarkar, B., Misra, M., Synthesis, radiolabeling and biological evaluation of a neutral tripeptide and its derivatives for potential nuclear medicine applications (2009) Peptides, 30, pp. 2399-2408
dc.descriptionChen, C.X., Pan, F., Zhang, S.Z., Hu, J., Cao, M.W., Wang, J., Antibacterial activities of short designer peptides: A link between propensity for nanostructuring and capacity for membrane destabilization (2010) Biomacromolecules, 11, pp. 402-411
dc.descriptionChow, L.W., Bitton, R., Webber, M.J., Carvajal, D.I., Shull, K.R., Sharma, A.K., A bioactive self-assembled membrane to promote angiogenesis (2011) Biomaterials, 32, pp. 1574-1582
dc.descriptionCouet, J., Samuel, J.D.J.S., Kopyshev, A., Santer, S., Biesalski, M., Peptide-polymer hybrid nanotubes (2005) Angew Chem Int Ed, 44, pp. 3297-3301
dc.descriptionCui, H., Webber, M.J., Stupp, S.I., Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials (2010) Pept Sci, 94, pp. 1-18
dc.descriptionDartois, V., Sanchez-Quesada, J., Cabezas, E., Chi, E., Dubbelde, C., Dunn, C., Systemic antibacterial activity of novel synthetic cyclic peptides (2005) Antimicrob Agents Chemother, 49, pp. 3302-3310
dc.descriptionDe La Rica, R., Matsui, H., Applications of peptide and protein-based materials in bionanotechnology (2010) Chem Soc Rev, 39, pp. 3499-3509
dc.descriptionDe La Rica, R., Mendoza, E., Lechuga, L.M., Matsui, H., Label-free pathogen detection with sensor chips assembled from peptide nanotubes (2008) Angew Chem Int Ed, 47, pp. 9752-9755
dc.descriptionEllis-Behnke, R.G., Liang, Y.X., You, S.W., Tay, D.K., Zhang, S., So, K.F., Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision (2006) Proc Natl Acad Sci USA, 103, pp. 5054-5059
dc.descriptionFenniri, H., Deng, B.L., Ribbe, A.E., Hallenga, K., Jacob, J., Thiyagarajan, P., Entropically driven self-assembly of multichannel rosette nanotubes (2002) Proc Natl Acad Sci USA, 99, pp. 6487-6492
dc.descriptionFenniri, H., Mathivanan, P., Vidale, K.L., Sherman, D.M., Hallenga, K., Wood, K.V., Helical rosette nanotubes: Design, self-assembly, and characterization (2001) J Am Chem Soc, 123, pp. 3854-3855
dc.descriptionFernandez-Lopez, S., Kim, H.-S., Choi, E.C., Delgado, M., Granja, J.R., Khasanov, A., Antibacterial agents based on the cyclic D,L-alpha-peptide architecture (2001) Nature, 412, pp. 452-455
dc.descriptionFletcher, J.T., Finlay, J.A., Callow, M.E., Callow, J.A., Ghadiri, M.R., A combinatorial approach to the discovery of biocidal six-residue cyclic D,L-alpha-peptides against the bacteria methicillin-resistant Staphylococcus aureus (MRSA) and E. coli and the biofouling algae Ulva linza and Navicula perminuta (2007) Chem Eur J, 13, pp. 4008-4013
dc.descriptionGhadiri, M.R., Cyclic Peptide Tube, , US Patent 2003
dc.description20036613875
dc.descriptionGhadiri, M.R., Granja, J.R., Buehler, L.K., Artificial transmembrane ion channels from self-assembling peptide nanotubes (1994) Nature, 369, pp. 301-304
dc.descriptionGhadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E., Kazanovich, N., Self-assembling organic nanotubes based on a cyclic peptide architecture (1993) Nature, 366, pp. 324-327
dc.descriptionGranja, J.R., Ghadiri, M.R., Channel-mediated transporto f glucose across lipid bilayers (1994) J Am Chem Soc, 116, pp. 10785-10786
dc.descriptionGomes, S., Leonor, I.B., Mano, J.F., Reis, R.L., Kaplan, D.L., Natural and genetically engineered proteins for tissue engineering (2012) Prog Polym Sci, 37, pp. 1-17
dc.descriptionHartgerink, J.D., Clark, T.D., Ghadiri, M.R., Peptide nanotubes and beyond (1998) Chem Eur J, 4, pp. 1367-1372
dc.descriptionHartgerink, J.D., Granja, J.R., Milligan, R.A., Ghadiri, M.R., Self-assembling peptide nanotubes (1996) J Am Chem Soc, 118, pp. 43-50
dc.descriptionHorne, W.S., Wiethoff, C.M., Cui, C., Wilcoxen, K.M., Amorin, M., Ghadiri, M.R., Antiviral cyclic D,L-alpha-peptides: Targeting a general biochemical pathway in virus infections (2005) Bioorg Med Chem, 13, pp. 5145-5153
dc.descriptionHsieh, W.H., Chang, S.F., Chen, H.M., Chen, J.H., Liaw, J., Oral gene delivery with cyclo-(D-Trp-Tyr) peptide nanotubes (2012) Mol Pharm, 9, pp. 1231-1249
dc.descriptionJohnson, K.T., Fath, K.R., Henricus, M.M., Banerjee, I.A., Self-assembly and growth of smart cell-adhesive mucin bound microtubes (2009) Soft Matter, 7, pp. 21-36
dc.descriptionKim, J.H., Ryu, J., Park, C.B., Selective detection of neurotoxin by photoluminescent peptide nanotubes (2011) Small, 7, pp. 718-722
dc.descriptionKanlayavattanakul, M., Lourith, N., Lipopeptides in cosmetics (2010) Int J Cosmet Sci, 32, pp. 1-8
dc.descriptionKomatsu, T., Terada, H., Kobayashi, N., Protein nanotubes with an enzyme interior surface (2011) Chem Eur J, 17, pp. 1849-1854
dc.descriptionLakshmanan, A., Zhang, S., Hauser, C.A.E., Short self-assembling peptides as building blocks for modern nanodevices (2012) Trends Biotechnol, 30, pp. 155-165
dc.descriptionLaromaine, A., Koh, L.L., Murugesan, M., Ulijn, R.V., Stevens, M.M., Protease-triggered dispersion of nanoparticle assemblies (2007) J Am Chem Soc, 129, p. 4156
dc.descriptionLoo, Y., Zhang, S., Hauser, C.A.E., From short peptides to nanofibers to macromolecular assemblies in biomedicine (2012) Biotechnol Adv, 30, pp. 593-603
dc.descriptionMata, A., Hsu, L., Capito, R., Aparicio, C., Henriksonc, K., Stupp, S.I., Micropatterning of bioactive self-assembling gels (2009) Soft Matter, 5, pp. 1228-1236
dc.descriptionMatsui, H., MacCuspie, R., Metalloporphyrin nanotube fabrication using peptide nanotubes as templates (2001) Nano Lett, 1, pp. 671-675
dc.descriptionMcGimpsey, W.G., Cyclic Peptide Structures for Molecular Scale Electronic and Photonic Devices, , US Patent 2003
dc.description20030144185A1
dc.descriptionMcGimpsey, W.G., Cyclic Peptide Nanotube Structures for Molecular Scale Electronic and Photonic Devices, , US Patent 2005
dc.description20050124535A1
dc.descriptionMcGimpsey, W.G., Grant, W., Cyclic Peptide Structures for Molecular Scale Electronic and Photonic Devices, , US Patent 2005
dc.description20056902720
dc.descriptionMitraki, A., Papanikolopoulou, K., Van Raaij, M.J., Natural triple beta-stranded fibrous folds (2006) Adv Protein Chem, 73, pp. 97-124
dc.descriptionMotesharei, K., Ghadiri, M.R., Diffusion-limited size-selective ion sensing based on SAM-supported peptide nanotubes (1997) J Am Chem Soc, 119, pp. 11306-11312
dc.descriptionNuraje, N., Banerjee, I.A., MacCuspie, R.I., Yu, L., Matsui, H., Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays (2004) J Am Chem Soc, 126, pp. 8088-8089
dc.descriptionPark, B.W., Ko, K.A., Yoon, D.Y., Kim, D.S., Enzyme activity assay for horseradish peroxidase encapsulated in peptide nanotubes (2012) Enzyme Microb Technol, 51, pp. 81-85
dc.descriptionPark, J.H., Kwon, S., Nam, J.O., Park, R.W., Chung, H., Seo, S.B., Self-assembled nanoparticles based on glycol chitosan bearing 5h-cholanic acid for RGD peptide delivery (2004) J Control Release, 95, pp. 579-588
dc.descriptionPetrov, A., Audette, G.F., Peptide and protein-based nanotubes for nanobiotechnology (2012) WIREs Nanomed Nanobiotechnol, 4, pp. 575-585. , 10.1002/wnan.1180
dc.descriptionPouget, R., Fay, N., Dujardin, E., Jamin, N., Berthault, P., Perrin, L., Elucidation of the self-assembly pathway of lanreotide octapeptide into β-Sheet (2010) J Am Chem Soc, 132, pp. 4230-4241
dc.descriptionProdan, M., Ionita, D., Ungureanu, C., Bojin, D., Demetrescu, I., Enhancing antibacterial effect of multiwalled carbon nanotubes using silver nanoparticles (2011) Dig J Nanomat Biostruct, 6, pp. 549-556
dc.descriptionQu, X., Kobayashi, N., Komatsu, T., Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein (2010) ACS Nano, 4, pp. 1732-1738
dc.descriptionQu, X., Komatsu, T., Molecular capture in protein nanotubes (2010) ACS Nano, 4, pp. 563-573
dc.descriptionRahmat, F., Thamwattana, N., Cox, B.J., Modelling peptide nanotubes for artificial ion channels (2011) Nanotechnology, 22, p. 445707. , 10.1088/0957-4484/22/44/445707
dc.descriptionRajangam, K., Bechanna, H.A., Hui, M.J., Han, X.Q., Hulvat, J.F., Lomasney, J.W., Heparin binding nanostructures to promote growth of blood vessels (2006) Nano Lett, 6, pp. 2086-2090
dc.descriptionReches, M., Gazit, E., Casting metal nanowires within discrete self-assembled peptide nanotubes (2003) Science, 300, pp. 625-627
dc.descriptionReches, M., Gazit, E., Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides (2004) Nano Lett, 4, pp. 581-585
dc.descriptionReches, M., Gazit, E., Peptide Nanostructures Containing End-capping Modified Peptides and Methods of Generating and Using the Same, , US Patent 2010
dc.description20100291828
dc.descriptionReches, M., Gazit, E., Peptide Nanostructures and Methods of Generating and Using the Same. US Patent 2011, , 20090123553, AT 509886
dc.descriptionRosenman, G., Beker, P., Koren, I., Yevnin, M., Bank-Srour, B., Mishina, E., Bioinspired peptide nanotubes: Deposition technology, basic physics and nanotechnology applications (2011) J Pept Sci, 17, pp. 75-87
dc.descriptionRyu, J., Park, C.H., High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks (2010) Biotechnol Bioeng, 105, pp. 221-230
dc.descriptionSanchez-Quesada, J., Bayley, H., Ghadiri, M.R., Braha, O., Cyclic peptides as molecular adapters for a pore-forming protein (2000) J Am Chem Soc, 122, pp. 11757-11766
dc.descriptionSanchez-Quesada, J., Kim, H.S., Ghadiri, M.R., A synthetic pore-mediated transmembrane transport of glutamic acid (2001) Angew Chem Int Ed, 40, p. 2503
dc.descriptionScanlon, S., Aggeli, A., Self-assembling peptide nanotubes (2008) Nanotoday, 3, pp. 22-30
dc.descriptionScheibel, T., Parthasarathy, R., Sawicki, G., Lin, X., Jaeger, H., Lindquist, S.L., Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition (2003) Proc Natl Acad Sci USA, 100, pp. 4527-4532
dc.descriptionSedman, V.L., Adler-Abramovich, L., Allen, S., Gazit, E., Tendler, S.J.B., Direct observation of the release of phenylalanine from diphenylalanine nanotubes (2006) J Am Chem Soc, 128, pp. 6903-6908
dc.descriptionShekhar, S., Anjia, L., Matsui, H., Khondaker, S.I., Electrical transport properties of peptide nanotubes coated with gold nanoparticles via peptide-induced biomineralization (2011) Nanotechnology, 22, p. 095202
dc.descriptionShimizu, T., Masuda, M., Minamikawa, H., Supramolecular nanotube architectures based on amphiphilic molecules (2005) Chem Rev, 105, pp. 1401-1403
dc.descriptionSong, Y., Challa, S.R., Medforth, C.J., Qiu, Y., Watt, R.K., Pena, D., Synthesis of peptide-nanotube platinum-nanoparticle composites (2004) Chem Commun, pp. 1044-1045
dc.descriptionSuri, S.S., Fenniri, H., Singh, B., Nanotechnology-based drug delivery systems (2007) J Occup Med Toxicol, 2, p. 16. , 10.1186/1745-6673-2-16
dc.descriptionTarabout, C., Roux, S., Gobeaux, F., Fay, N., Pouget, E., Meriadec, C., Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact (2011) Proc Natl Acad Sci USA, 108, pp. 7679-7684. , 10.1073/pnas.1017343108
dc.descriptionUlijn, R.V., Smith, A.M., Designing peptide based nanomaterials (2008) Chem Soc Rev, 37, pp. 664-675
dc.descriptionValery, C., Artzner, F., Paternostre, M., Peptide nanotubes: Molecular organizations, self-assembly mechanisms and applications (2011) Soft Matter, 7, pp. 9583-9594. , 10.1039/c1sm05698k
dc.descriptionWebber, M.J., Tongers, J., Newcomb, C.J., Marquardt, K.T., Bauersachs, J., Losordo, D.W., Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair (2011) Proc Natl Acad Sci USA, 108, pp. 13438-13443. , 10.1073/pnas.1016546108
dc.descriptionYan, X., He, Q., Wang, K., Duan, L., Cui, Y., Li, J., Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery (2007) Angew Chem Int Ed, 46, pp. 2431-2434
dc.descriptionYan, X., Zhu, P., Li, J., Self-assembly and application of diphenylalanine-based nanostructures (2010) Chem Soc Rev, 39, pp. 1877-1890
dc.descriptionYemini, M., Reches, M., Rishpon, J., Gazit, E., Novel electrochemical biosensing platform using self-assembled peptide nanotubes (2005) Nano Lett, 5, pp. 183-186
dc.descriptionYemini, M., Reches, M., Rishpon, J., Gazit, E., YPeptide Nanostructure-coated Electrodes, , US Patent 2007
dc.description20070138007
dc.descriptionYu, L., Banerjee, A.I.A., Gao, X., Nuraje, N., Matsui, H., Fabrication and application of enzyme-incorporated peptide nanotubes (2005) Bioconjug Chem, 16, pp. 1484-1487
dc.descriptionZhao, Z., Banerjee, I.A., Matsui, H., Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-atterned surfaces via biological molecular recognition (2005) J Am Chem Soc, 127, pp. 8930-8931
dc.descriptionZhang, S., Vauthey, S., Surfactant Peptide Nanostructures, and Uses Thereof, , WO Patent 2003
dc.description03006043A1
dc.descriptionZhao, X., Pan, F., Xu, H., Yaseen, M., Shan, H., Hauser, C.A.E., Molecular self-assembly and applications of designer peptide amphiphiles (2010) Chem Soc Rev, 39, pp. 3480-3498
dc.descriptionZhou, Y., Patenting activity in synthesis of lipid nanotubes and peptide nanotubes (2007) Recent Pat Nanotechnol, 1, pp. 21-28
dc.languageen
dc.publisher
dc.relationPeptides
dc.rightsfechado
dc.sourceScopus
dc.titleBiological Applications Of Peptides Nanotubes: An Overview
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución