dc.creatorPapoti M.
dc.creatorDa Silva A.S.R.
dc.creatorAraujo G.G.
dc.creatorSantiago V.
dc.creatorMartins L.E.B.
dc.creatorCunha S.A.
dc.creatorGobatto C.A.
dc.date2013
dc.date2015-06-25T19:16:01Z
dc.date2015-11-26T15:13:59Z
dc.date2015-06-25T19:16:01Z
dc.date2015-11-26T15:13:59Z
dc.date.accessioned2018-03-28T22:24:06Z
dc.date.available2018-03-28T22:24:06Z
dc.identifier
dc.identifierInternational Journal Of Sports Medicine. , v. 34, n. 8, p. 712 - 719, 2013.
dc.identifier1724622
dc.identifier10.1055/s-0031-1291250
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84881190244&partnerID=40&md5=293f6e750839099a2975814783b5f948
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89383
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89383
dc.identifier2-s2.0-84881190244
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258771
dc.descriptionThe purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake (̇VO2MAX) and force associated with the ̇VO2MAX (i ̇VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ̇VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ̇VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ̇VO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming. © Georg Thieme Verlag KG Stuttgart . New York.
dc.description34
dc.description8
dc.description712
dc.description719
dc.descriptionAlmeida, A.G., Cunha, F.A.P., Rosa, M.R.R., Kokubun, E., Critical force in tethered swimming: Relationship with blood lactate and oxygen uptake (2004) Rev Bras Ciên Esporte, 24, pp. 47-59
dc.descriptionBillat, V.L., Morton, R.H., Blondel, N., Berthoin, S., Bocquet, V., Koralsztein, J.P., Barstow, T.J., Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake (2000) European Journal of Applied Physiology, 82 (3), pp. 178-187
dc.descriptionBishop, D., Jenkins, D.G., The influence of resistance training on the critical power function and time to fatigue at critical power (1996) Aust J Sci Med Sport, 28, pp. 101-110
dc.descriptionBland, J.M., Altman, D.G., Statistical methods for assessing agreement between two methods of clinical measurement (1986) Lancet, 1 (8476), pp. 307-310. , PII S0140673686908378
dc.descriptionBlondel, N., Berthoin, S., Billat, V., Lensel, G., Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity (2001) International Journal of Sports Medicine, 22 (1), pp. 27-33. , DOI 10.1055/s-2001-11357
dc.descriptionBonen, A., Wilson, B.A., Yarkony, M., Belcastro, A.N., Maximal oxygen uptake during free, tethered, and flume swimming (1980) Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, 48 (2), pp. 232-235
dc.descriptionBosquet, L., Delhors, P.R., Duchene, A., Dupont, G., Leger, L., Anaerobic running capacity determined from a 3-parameter systems model: Relationship with other anaerobic indices and with running performance in the 800 m-run (2007) International Journal of Sports Medicine, 28 (6), pp. 495-500. , DOI 10.1055/s-2006-924516
dc.descriptionCostill, D.L., Kovaleski, J., Porter, D., Energy expenditure during front crawl swimming: Predicting success in middle-distance events (1985) International Journal of Sports Medicine, 6 (5), pp. 266-270
dc.descriptionDekerle, J., Brickley, G., Alberty, M., Pelayo, P., Characterising the slope of the distance-time relationship in swimming (2010) J Sci Med Sport, 13, pp. 365-370
dc.descriptionDekerle, J., Brickley, G., Hammond, A.J.P., Pringle, J.S.M., Carter, H., Validity of the two-parameter model in estimating the anaerobic work capacity (2006) European Journal of Applied Physiology, 96 (3), pp. 257-264. , DOI 10.1007/s00421-005-0074-8
dc.descriptionDekerle, J., Pelayo, P., Clipet, B., Depretz, S., Lefevre, T., Sidney, M., Critical swimming speed does not represent the speed at maximal lactate steady state (2005) International Journal of Sports Medicine, 26 (7), pp. 524-530. , DOI 10.1055/s-2004-821227
dc.descriptionDekerle, J., Sidney, M., Hespel, J.M., Pelayo, P., Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances (2002) International Journal of Sports Medicine, 23 (2), pp. 93-98. , DOI 10.1055/s-2002-20125
dc.descriptionDi Prampero, P.E., Dekerle, J., Capelli, C., Zamparo, P., The critical velocity in swimming (2008) European Journal of Applied Physiology, 102 (2), pp. 165-171. , DOI 10.1007/s00421-007-0569-6
dc.descriptionEckerson, J.M., Bull, A.A., Moore, G.A., Effect of thirty days of creatine supplementation with phosphate salts on anaerobic working capacity and body weight in men (2008) J Strength Cond Res, 22, pp. 826-832
dc.descriptionFerguson, C., Whipp, B.J., Cathcart, A.J., Rossiter, H.B., Turner, A.P., Ward, S.A., Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance (2007) Journal of Applied Physiology, 103 (3), pp. 812-822. , http://jap.physiology.org/cgi/reprint/103/3/812, DOI 10.1152/japplphysiol.01410.2006
dc.descriptionFernandes, R.J., Cardoso, C.S., Soares, S.M., Ascensao, A., Colaco, P.J., Vilas-Boas, J.P., Time Limit and VO2 Slow Component at Intensities Corresponding to VO2max in Swimmers (2003) International Journal of Sports Medicine, 24 (8), pp. 576-581. , DOI 10.1055/s-2003-43274
dc.descriptionFernandes, R.J., Keskinen, K.L., Colaco, P., Querido, A.J., Machado, L.J., Morais, P.A., Novais, D.Q., Vilas Boas, J.P., Time limit at VO2max velocity in elite crawl swimmers (2008) International Journal of Sports Medicine, 29 (2), pp. 145-150. , DOI 10.1055/s-2007-965113
dc.descriptionFukuba, Y., Miura, A., Endoi, M., Kan, A., Yanagawa, K., Whipp, B.J., The curvature constant parameter of the power-duration curve for varied-power exercise (2003) Medicine and Science in Sports and Exercise, 35 (8), pp. 1413-1418. , DOI 10.1249/01.MSS.0000079047.84364.70
dc.descriptionGreen, S., Dawson, B.T., The Y-intercept of the maximal work-duration regression and field tests of anaerobic capacity in cyclists (1996) International Journal of Sports Medicine, 17 (1), pp. 41-47. , DOI 10.1055/s-2007-972806
dc.descriptionHarriss, D.J., Atkinson, G., Update - Ethical Standards in Sport and Exercise Science Research (2011) J Sports Med, 32, pp. 819-821
dc.descriptionHill, D.W., Smith, J.C., A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept (1994) Journal of Sports Medicine and Physical Fitness, 34 (1), pp. 23-37
dc.descriptionIkuta, Y., Wakayoshi, K., Nomura, T., Determination and validity of critical swimming force as performance index in tethered swimming (1996) Biomech Med Swimming, 7, pp. 146-151
dc.descriptionJenkins, D.G., Quigley, B.M., The y-intercept of the critical power functions as a measure of anaerobic work capacity (1991) Ergonomics, 34, pp. 13-22
dc.descriptionJones, A.M., Wilkerson, D.P., DiMenna, F., Fulford, J., Poole, D.C., Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS (2008) American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 294 (2), pp. R585-R593. , http://ajpregu.physiology.org/cgi/reprint/294/2/R585, DOI 10.1152/ajpregu.00731.2007
dc.descriptionJones, A.M., Vanhatal, A., Burnle, M., Morto, R.H., Poole, D.C., Critical Power: Implications for the determination of VO2 max and exercise tolerance (2010) Med Sci Sports Exerc, 42, pp. 1876-1890
dc.descriptionKendall, K.L., Smith, A.E., Graef, J.L., Fukuda, D.H., Moon, J.R., Beck, T.W., Cramer, J.T., Stout, J.R., Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men (2009) J Strength Cond Res, 23, pp. 1663-1669
dc.descriptionKuipers, H., Verstappen, F.T.J., Keizer, H.A., Variability of aerobic performance in the laboratory and its physiologic correlates (1985) International Journal of Sports Medicine, 6 (4), pp. 197-201
dc.descriptionLeclair, E., Borel, B., Thevenet, D., Baquet, G., Mucci, P., Berthoin, S., Assessment of child-specific aerobic fitness and anaerobic capacity by the use of the power-time relationships constants (2010) Pediatr Exerc Sci, 22, pp. 454-466
dc.descriptionMartin, R.B., Yeater, R.A., White, M.K., A simple analytical model for the crawl stroke (1981) Journal of Biomechanics, 14 (8), pp. 539-548. , DOI 10.1016/0021-9290(81)90003-8
dc.descriptionMatsumoto, I., Araki, H., Tsuda, K., Odajima, H., Nishima, S., Higaki, Y., Tanaka, H., Shindo, M., Effects of swimming training on aerobic capacity and exercise induced bronchoconstriction in children with bronchial asthma (1999) Thorax, 54 (3), pp. 196-201
dc.descriptionMiura, A., Endo, M., Sato, H., Sato, H., Barstow, T.J., Fukuba, Y., Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans (2002) European Journal of Applied Physiology, 87 (3), pp. 238-244. , DOI 10.1007/s00421-002-0623-3
dc.descriptionMonod, H., Scherrer, J., The work capacity of a synergic muscular group (1965) Ergonomics, 8, pp. 329-337
dc.descriptionMorouço, P., Keskinen, K.L., Vilas-Boas, J.P., Fernandes, R.J., Relationship between tethered forces and the four swimming techniques performance (2011) J Appl Biomech, 27, pp. 161-169
dc.descriptionMorton, R.H., The critical power and related whole-body bioenergetic models (2006) Eur J Appl Physiol, 96, pp. 339-354
dc.descriptionPapoti, M., Balikian, J.P., Denadai, B.S., Lima, M.C.S., Silva, A.S.R., Santhiago, V., Gobatto, C.A., Adaptation of the VO2000 gas analiser's mask to mensuration of cardiorespiratory parameters in swimming (2007) Rev Bras Med Esporte, 13, pp. 190-194
dc.descriptionPapoti, M., Martins, L.E.B., Cunha, S.A., Zagatto, A.M., Gobatto, C.A., Effects of taper on swimming force and Swimmer performance after an experimental ten-week training program (2007) Strength Cond Res, 21, pp. 538-542
dc.descriptionPapoti, M., Zagatto, A.M., Barbosa De Freitas Jr., P., Cunha, S.A., Barreto Martins, L.E., Gobatto, C.A., Use of the y-intercept in the evaluation of the anaerobic fitness and performance prediction of trained swimmers (2005) Revista Brasileira de Medicina do Esporte, 11 (2), pp. 126-130
dc.descriptionPerandini, L.A.B., Okuno, N.M., Kokubun, E., Nakamura, F.Y., Correlation between critical force and critical velocity and their respective stroke rates (2007) Rev Bras Cineantropom Desempenho Hum, 8, pp. 59-65
dc.descriptionRaglin, J.S., Koceja, D.M., Stager, J.M., Harms, C.A., Mood, neuromuscular function, and performance during training in female swimmers (1996) Medicine and Science in Sports and Exercise, 28 (3), pp. 372-377. , DOI 10.1097/00005768-199603000-00013
dc.descriptionSoares, S., Vilar, S., Bernardo, C., Campos, A., Fernandes, R., Vilas-Boas, J.P., Using data from the critical velocity regression line for the estimation of anaerobic capacity in infant and adult swimmers (2003) Portuguese J Sport Sci, 3, pp. 108-110
dc.descriptionTakahashi, S., Wakayoshi, K., Hayashi, A., Sakaguchi, Y., Kitagawa, K., A method for determining critical swimming velocity (2009) Int J Sports Med, 30, pp. 119-123
dc.descriptionTaylor, S.A., Batterham, A.M., The reproducibility of estimates of critical power and anaerobic work capacity in upper-body exercise (2002) European Journal of Applied Physiology, 87 (1), pp. 43-49. , DOI 10.1007/s00421-002-0586-4
dc.descriptionToussaint, H.M., Wakayoshi, K., Hollander, A.P., Ogita, F., Simulated front crawl swimming performance related to critical speed and critical power (1998) Medicine and Science in Sports and Exercise, 30 (1), pp. 144-151. , DOI 10.1097/00005768-199801000-00020
dc.descriptionWest, S.A., Drummond, M.J., VanNess, J.M., Ciccolella, M.E., Blood lactate and metabolic responses to controlled frequency breathing during graded swimming (2005) Journal of Strength and Conditioning Research, 19 (4), pp. 772-776. , DOI 10.1519/R-14543.1
dc.descriptionWilliams, C.A., Dekerle, J., McGawley, K., Berthoin, S., Carter, H., Critical power in adolescent boys and girls - An exploratory study (2008) Appl Physiol Nutr Metab, 33, pp. 1105-1111
dc.descriptionYeater, R.A., Martin, R.B., White, M.K., Gilson, K.H., Tethered swimming forces in the crawl breast and back strokes and their relationship to competitive performance (1981) Journal of Biomechanics, 14 (8), pp. 527-537. , DOI 10.1016/0021-9290(81)90002-6
dc.languageen
dc.publisher
dc.relationInternational Journal of Sports Medicine
dc.rightsaberto
dc.sourceScopus
dc.titleAerobic And Anaerobic Performances In Tethered Swimming
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución