dc.creatorCooney J.D.
dc.creatorHildick-Smith G.J.
dc.creatorShafizadeh E.
dc.creatorMcBride P.F.
dc.creatorCarroll K.J.
dc.creatorAnderson H.
dc.creatorShaw G.C.
dc.creatorTamplin O.J.
dc.creatorBranco D.S.
dc.creatorDalton A.J.
dc.creatorShah D.I.
dc.creatorWong C.
dc.creatorGallagher P.G.
dc.creatorZon L.I.
dc.creatorNorth T.E.
dc.creatorPaw B.H.
dc.date2013
dc.date2015-06-25T19:15:57Z
dc.date2015-11-26T15:13:52Z
dc.date2015-06-25T19:15:57Z
dc.date2015-11-26T15:13:52Z
dc.date.accessioned2018-03-28T22:23:57Z
dc.date.available2018-03-28T22:23:57Z
dc.identifier
dc.identifierDevelopmental Biology. , v. 373, n. 2, p. 431 - 441, 2013.
dc.identifier121606
dc.identifier10.1016/j.ydbio.2012.08.015
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84871693252&partnerID=40&md5=880ad069f52ec49205e7a092472b8120
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89366
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89366
dc.identifier2-s2.0-84871693252
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258740
dc.descriptionGrowth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1. a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1. b, regulates HSC, megakaryocyte and erythroid development. In zebrafish, gfi1. aa is essential for primitive hematopoiesis; however, little is known about the role of gfi1. aa in definitive hematopoiesis or about additional gfi factors in zebrafish. Here, we report the isolation and characterization of an additional hematopoietic gfi factor, gfi1. b. We show that gfi1. aa and gfi1. b are expressed in the primitive and definitive sites of hematopoiesis in zebrafish. Our functional analyses demonstrate that gfi1. aa and gfi1. b have distinct roles in regulating primitive and definitive hematopoietic progenitors, respectively. Loss of gfi1. aa silences markers of early primitive progenitors, scl and gata1. Conversely, loss of gfi1. b silences runx-1, c-myb, ikaros and cd41, indicating that gfi1. b is required for definitive hematopoiesis. We determine the epistatic relationships between the gfi factors and key hematopoietic transcription factors, demonstrating that gfi1. aa and gfi1. b join lmo2, scl, runx-1 and c-myb as critical regulators of teleost HSPC. Our studies establish a comparative paradigm for the regulation of hematopoietic lineages by gfi transcription factors. © 2012 Elsevier Inc.
dc.description373
dc.description2
dc.description431
dc.description441
dc.descriptionAmigo, J.D., Yu, M., Troadec, M.-B., Gwynn, B., Cooney, J.D., Lambert, A.J., Chi, N.C., Paw, B.H., Identification of distal cis-regulatory elements at mouse mitoferrin loci using zebrafish transgenesis (2011) Mol. Cell. Biol., 31, pp. 1344-1356
dc.descriptionAmigo, J.D., Ackermann, G.E., Cope, J.J., Yu, M., Cooney, J.D., Ma, D., Langer, N.B., Paw, B.H., The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish (2009) Blood, 114, pp. 4654-4663
dc.descriptionBolli, N., Payne, E.M., Rhodes, J., Gjini, E., Johnston, A.B., Guo, F., Lee, J.-S., Look, A.T., Cpsf1 is required for definitive HSC survival in zebrafish (2011) Blood, 117, pp. 3996-4007
dc.descriptionBurns, C.E., Traver, D., Mayhall, E., Shepard, J.L., Zon, L.I., Hematopoietic stem cell fate is established by the Notch-Runx pathway (2005) Genes Dev., 19, pp. 2331-2342
dc.descriptionBussmann, J., Bakkers, J., Schulte-Merker, S., Early endocardial morphogenesis requires Scl/Tal1 (2007) PLoS Genet., 3, pp. e140
dc.descriptionDan, K., Thrombocytosis in iron deficiency anemia (2005) Intern. Med., 44, pp. 1025-1026
dc.descriptionDavidson, A.J., Zon, L.I., The 'definitive' (and "primitive") guide to zebrafish hematopoiesis (2004) Oncogene, 23, pp. 7233-7246
dc.descriptionDooley, K.A., Davidson, A.J., Zon, L.I., Zebrafish scl functions independently in hematopoietic and endothelial development (2005) Dev. Biol., 277, pp. 522-536
dc.descriptionDufourcq, P., Rastegar, S., Strähle, U., Blader, P., Parapineal specific expression of gfi1 in the zebrafish epithalamus (2004) Gene. Expr. Patterns, 4, pp. 53-57
dc.descriptionFarr, C.J., Saiki, R.K., Erlich, H.A., McCormick, F., Marshall, C.J., Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes (1988) Proc. Natl. Acad. Sci. USA, 85, pp. 1629-1633
dc.descriptionGanis, J.J., Hsia, N., Trompouki, E., de Jong, J.L.O., Dibiase, A., Lambert, J.S., Jia, Z., Zon, L.I., Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR (2012) Dev. Biol., 366, pp. 185-194
dc.descriptionGering, M., Rodaway, A.R., Göttgens, B., Patient, R.K., Green, A.R., The SCL gene specifies haemangioblast development from early mesoderm (1998) EMBO J., 17, pp. 4029-4045
dc.descriptionGilks, C.B., Bear, S.E., Grimes, H.L., Tsichlis, P.N., Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein (1993) Mol. Cell. Biol., 13, pp. 1759-1768
dc.descriptionGrimes, H.L., Chan, T.O., Zweidler-Mckay, P.A., Tong, B., Tsichlis, P.N., The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal (1996) Mol. Cell. Biol., 16, pp. 6263-6272
dc.descriptionHock, H., Hamblen, M.J., Rooke, H.M., Schindler, J.W., Saleque, S., Fujiwara, Y., Orkin, S.H., Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells (2004) Nature, 431, pp. 1002-1007
dc.descriptionHock, H., Hamblen, M.J., Rooke, H.M., Traver, D., Bronson, R.T., Cameron, S., Orkin, S.H., Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation (2003) Immunity, 18, pp. 109-120
dc.descriptionHsu, K., Traver, D., Kutok, J.L., Hagen, A., Liu, T.-X., Paw, B.H., Rhodes, J., Look, A.T., The pu.1 promoter drives myeloid gene expression in zebrafish (2004) Blood, 104, pp. 1291-1297
dc.descriptionKarsunky, H., Zeng, H., Schmidt, T., Zevnik, B., Kluge, R., Schmid, K.W., Dührsen, U., Möröy, T., Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1 (2002) Nat. Genet., 30, pp. 295-300
dc.descriptionKhandanpour, C., Sharif-Askari, E., Vassen, L., Gaudreau, M.-C., Zhu, J., Paul, W.E., Okayama, T., Möröy, T., Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells (2010) Blood, 116, pp. 5149-5161
dc.descriptionLiao, E.C., Trede, N.S., Ransom, D., Zapata, A., Kieran, M., Zon, L.I., Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish (2002) Development, 129, pp. 649-659
dc.descriptionLieschke, G.J., Oates, A.C., Paw, B.H., Thompson, M.A., Hall, N.E., Ward, A.C., Ho, R.K., Layton, J.E., Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning (2002) Dev. Biol., 246, pp. 274-295
dc.descriptionLin, H.-F., Traver, D., Zhu, H., Dooley, K., Paw, B.H., Zon, L.I., Handin, R.I., Analysis of thrombocyte development in CD41-GFP transgenic zebrafish (2005) Blood, 106, pp. 3803-3810
dc.descriptionLiu, F., Walmsley, M., Rodaway, A., Patient, R., Fli1 acts at the top of the transcriptional network driving blood and endothelial development (2008) Curr. Biol., 18, pp. 1234-1240
dc.descriptionLong, Q., Meng, A., Wang, H., Jessen, J.R., Farrell, M.J., Lin, S., GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene (1997) Development, 124, pp. 4105-4111
dc.descriptionLyons, S.E., Lawson, N.D., Lei, L., Bennett, P.E., Weinstein, B.M., Liu, P.P., A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 5454-5459
dc.descriptionMa, D., Zhang, J., Lin, H.-F., Italiano, J., Handin, R.I., The identification and characterization of zebrafish hematopoietic stem cells (2011) Blood, 118, pp. 289-297
dc.descriptionMeeker, N.D., Hutchinson, S.A., Ho, L., Trede, N.S., Method for isolation of PCR-ready genomic DNA from zebrafish tissues (2007) BioTechniques, 43, pp. 610-614
dc.descriptionNilsson, R., Schultz, I.J., Pierce, E.L., Soltis, K.A., Naranuntarat, A., Ward, D.M., Baughman, J.M., Mootha, V.K., Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis (2009) Cell Metab., 10, pp. 119-130
dc.descriptionPatterson, L.J., Gering, M., Patient, R., Scl is required for dorsal aorta as well as blood formation in zebrafish embryos (2005) Blood, 105, pp. 3502-3511
dc.descriptionPatterson, L.J., Gering, M., Eckfeldt, C.E., Green, A.R., Verfaillie, C.M., Ekker, S.C., Patient, R., The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish (2007) Blood, 109, pp. 2389-2398
dc.descriptionPaw, B.H., Moskowitz, S.M., Uhrhammer, N., Wright, N., Kaback, M.M., Neufeld, E.F., Juvenile GM2 gangliosidosis caused by substitution of histidine for arginine at position 499 or 504 of the alpha-subunit of beta-hexosaminidase (1990) J. Biol. Chem., 265, pp. 9452-9457
dc.descriptionPelster, B., Burggren, W.W., Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio) (1996) Circ. Res., 79, pp. 358-362
dc.descriptionPerson, R.E., Li, F.-Q., Duan, Z., Benson, K.F., Wechsler, J., Papadaki, H.A., Eliopoulos, G., Horwitz, M., Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2 (2003) Nat. Genet., 34, pp. 308-312
dc.descriptionPostlethwait, J., Woods, I., Ngo-Hazelett, P., Yan, Y., Kelly, P., Chu, F., Huang, H., Talbot, W., Zebrafish comparative genomics and the origins of vertebrate chromosomes (2000) Genome Res., 10, p. 1890
dc.descriptionRandrianarison-Huetz, V., Laurent, B., Bardet, V., Blobe, G.C., Huetz, F., Duménil, D., Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage (2010) Blood, 115, pp. 2784-2795
dc.descriptionRhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T.-X., Look, A.T., Kanki, J.P., Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish (2005) Dev. Cell, 8, pp. 97-108
dc.descriptionSaleque, S., Cameron, S., Orkin, S.H., The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages (2002) Genes Dev., 16, pp. 301-306
dc.descriptionSchmidt, T., Karsunky, H., Gau, E., Zevnik, B., Elsässer, H.P., Möröy, T., Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis (1998) Oncogene, 17, pp. 2661-2667
dc.descriptionSchmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method (2008) Nat. Protoc., 3, pp. 1101-1108
dc.descriptionShaw, G.C., Cope, J.J., Li, L., Corson, K., Hersey, C., Ackermann, G.E., Gwynn, B., Paw, B.H., Mitoferrin is essential for erythroid iron assimilation (2006) Nature, 440, pp. 96-100
dc.descriptionSood, R., English, M.A., Belele, C.L., Jin, H., Bishop, K., Haskins, R., McKinney, M.C., Liu, P.P., Development of multilineage adult hematopoiesis in the zebrafish with a runx1 truncation mutation (2010) Blood, 115, pp. 2806-2809
dc.descriptionSpooner, C.J., Cheng, J.X., Pujadas, E., Laslo, P., Singh, H., A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates (2009) Immunity, 31, pp. 576-586
dc.descriptionStainier, D.Y., Weinstein, B.M., Detrich, H.W., Zon, L.I., Fishman, M.C., Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages (1995) Development, 121, pp. 3141-3150
dc.descriptionThompson, M.A., Ransom, D.G., Pratt, S.J., MacLennan, H., Kieran, M.W., Detrich, H.W., Vail, B., Zon, L.I., The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis (1998) Dev. Biol., 197, pp. 248-269
dc.descriptionvan der Meer, L.T., Jansen, J.H., van der Reijden, B.A., Gfi1 and Gfi1b: key regulators of hematopoiesis (2010) Leukemia, 24, pp. 1834-1843
dc.descriptionWallis, D., Hamblen, M., Zhou, Y., Venken, K.J.T., Schumacher, A., Grimes, H.L., Zoghbi, H.Y., Bellen, H.J., The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival (2003) Development, 130, pp. 221-232
dc.descriptionWei, W., Wen, L., Huang, P., Zhang, Z., Chen, Y., Xiao, A., Huang, H., Lin, S., Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis (2008) Cell Res., 18, pp. 677-685
dc.descriptionWilson, N.K., Timms, R.T., Kinston, S.J., Cheng, Y.-H., Oram, S.H., Landry, J.-R., Mullender, J., Gottgens, B., Gfi1 expression is controlled by five distinct regulatory regions spread over 100 kilobases, with Scl/Tal1, Gata2, PU.1, Erg, Meis1, and Runx1 acting as upstream regulators in early hematopoietic cells (2010) Mol. Cell. Biol., 30, pp. 3853-3863
dc.descriptionWoods, I., Kelly, P., Chu, F., Ngo-Hazelett, P., Yan, Y., Huang, H., Postlethwait, J., Talbot, W., A comparative map of the zebrafish genome (2000) Genome Res., 10, p. 1903
dc.descriptionZeng, H., Yücel, R., Kosan, C., Klein-Hitpass, L., Möröy, T., Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells (2004) EMBO J., 23, pp. 4116-4125
dc.languageen
dc.publisher
dc.relationDevelopmental Biology
dc.rightsfechado
dc.sourceScopus
dc.titleTeleost Growth Factor Independence (gfi) Genes Differentially Regulate Successive Waves Of Hematopoiesis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución