dc.creator | Rubilar O. | |
dc.creator | Rai M. | |
dc.creator | Tortella G. | |
dc.creator | Diez M.C. | |
dc.creator | Seabra A.B. | |
dc.creator | Duran N. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:15:54Z | |
dc.date | 2015-11-26T15:13:50Z | |
dc.date | 2015-06-25T19:15:54Z | |
dc.date | 2015-11-26T15:13:50Z | |
dc.date.accessioned | 2018-03-28T22:23:55Z | |
dc.date.available | 2018-03-28T22:23:55Z | |
dc.identifier | | |
dc.identifier | Biotechnology Letters. , v. 35, n. 9, p. 1365 - 1375, 2013. | |
dc.identifier | 1415492 | |
dc.identifier | 10.1007/s10529-013-1239-x | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84880974100&partnerID=40&md5=68e88b00a259a04b54d2f063e47805fb | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/89359 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/89359 | |
dc.identifier | 2-s2.0-84880974100 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1258728 | |
dc.description | Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed. © 2013 Springer Science+Business Media Dordrecht. | |
dc.description | 35 | |
dc.description | 9 | |
dc.description | 1365 | |
dc.description | 1375 | |
dc.description | Ahmad, A., Jagadale, T., Dhas, V., Khan, S., Patil, S., Pasricha, R., Ravi, V., Ogale, S., Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CuAlO2 (2007) Adv Mater, 19, pp. 3295-3299 | |
dc.description | Asmathunisha, N., Kathiresan, K., A review on biosynthesis of nanoparticles by marine organisms (2013) Colloids Surf B, 103, pp. 283-287 | |
dc.description | Athanassiou, E.K., Grass, R.N., Stark, W.J., Large-scale production of carbon-coated copper nanoparticles for sensor applications (2006) Nanotechnology, 17, p. 1668 | |
dc.description | Bajpai, S.K., Bajpai, M., Sharma, L., Copper nanoparticles loaded alginate-impregnated cotton fabric with antibacterial properties (2012) J Appl Polym Sci, 126, pp. E318-E325 | |
dc.description | Basavaraja, S., Balaji, S.D., Lagashetty, A., Rajasab, A.H., Venkataraman, A., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum (2008) Mat Res Bull, 43, pp. 1164-1170 | |
dc.description | Bicer, M., Sisman, I., Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution (2010) Powder Technol, 198, pp. 279-284 | |
dc.description | Blanco-Andujar, C., Tung, L.D., Thanh, N.T.K., Synthesis of nanoparticles for biomedical applications (2010) Annu Rep Prog Chem Sect A, 106, pp. 553-568 | |
dc.description | Borkow, G., Zatcoff, R.C., Gabbay, J., Reducing the risk of skin pathologies in diabetics by using copper impregnated socks (2009) Med Hypotheses, 73, pp. 883-886 | |
dc.description | Borkow, G., Gabbay, J., Dardik, R., Eidelman, A.I., Lavie, Y., Grunfeld, Y., Ikher, S., Marikovsky, M., Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings (2010) Wound Repair Regen, 18, pp. 266-275 | |
dc.description | Cady, N.C., Behnke, J.L., Strickland, A.D., Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro (2011) Adv Funct Mater, 21, pp. 2506-2514 | |
dc.description | Chandran, C.B., Subramanian, T.V., Felse, P.A., Chemometric optimization of parameters for biocatalytic reduction of copper ion by a crude enzyme lyzate of Saccharomyces cerevisiae grown under catabolic repression conditions (2001) Biochem Eng J, 8, pp. 31-37 | |
dc.description | Chatterjee, A.K., Sarkar, R.K., Chattopadhyay, A.P., Aich, P., Chakraborty, R., Basu, T., A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli (2012) Nanotechnology, 23, pp. 85-103 | |
dc.description | Cheon, J., Lee, J., Kim, J., Inkjet printing using copper nanoparticles synthesized by electrolysis (2012) Thin Solid Films, 520, pp. 2639-2643 | |
dc.description | Dewan, M., Kumar, A., Saxena, A., De, A., Mozumdar, S., Biginelli reaction catalyzed by copper nanoparticles (2012) PLoS ONE, 7, pp. e43078 | |
dc.description | Duan, Z., Ma, G., Zhang, W., Preparation of copper nanoparticles and catalytic properties for the reduction of aromatic nitro compounds (2012) Bull Korean Chem Soc, 33, pp. 4003-4006 | |
dc.description | Durán, N., Marcato, P.D., Biotechnological routes to metallic nanoparticles production: mechanistics aspects, antimicrobial activity, toxicity and industrial applications (2012) Nano-Antimicrobials: Progress and Prospects vol Part 3, pp. 337-374. , M. Rai and N. Cioffi (Eds.), Berlin: Springer | |
dc.description | Durán, N., Seabra, A.B., Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms (2012) Appl Microbiol Biotechnol, 95, pp. 275-288 | |
dc.description | Durán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959 | |
dc.description | Durán, N., Marcato, P.D., Ingle, A., Gade, A., Rai, M., Fungi mediated synthesis of silver nanoparticles: characterization processes and applications (2010) Progress in Mycology, pp. 425-449. , M. Rai, G. Kövics (Eds.), Jodhpur: Scientific Publishers | |
dc.description | Durán, N., Marcato, P.D., Durán, M., Yadav, A., Gade, A., Rai, M., Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants (2011) Appl Microbiol Biotechnol, 90, pp. 1609-1624 | |
dc.description | Gade, A., Ingle, A., Whiteley, C., Rai, M., Mycogenic metal nanoparticles: progress and applications (2010) Biotechnol Lett, 32, pp. 593-600 | |
dc.description | Gomes, T., Araújo, O., Pereira, R., Almeida, A.C., Cravo, A., Bebianno, M.J., Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis (2013) Mar Environ Res, 84, pp. 51-59 | |
dc.description | Gopalakrishnan, K., Ramesh, C., Ragunathan, V., Thamilselvan, M., Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline (2012) Digest J Nanomat Biostruct, 7, pp. 833-839 | |
dc.description | Grass, G., Rensing, C., Solioz, M., Metallic copper as an antimicrobial surface (2011) Appl Environ Microbiol, 77 (5), pp. 1541-1547 | |
dc.description | Guajardo-Pacheco Ma, J., Morales-Sanchez, J.E., Gonzalez-Hernandez, J., Ruiz, F., Synthesis of copper nanoparticles using soybeans as a chelant agent (2010) Mat Lett, 64, pp. 1361-1364 | |
dc.description | Gunalan, S., Sivaraj, R., Venckatesh, R., Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties (2012) Spectrochim Acta A, 97, pp. 1140-1144 | |
dc.description | Gupta, R.K., Kusuma, D.Y.K., Lee, O.S., Srinivasan, M.P., Copper nanoparticles embedded in a polyimide film for non-volatile memory applications (2012) Mater Lett, 68, pp. 287-289 | |
dc.description | Harne, S., Sharma, A., Dhaygude, M., Joglekar, S., Kodam, K., Hudlikar, M., Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells (2012) Colloids Surf B, 95, pp. 284-288 | |
dc.description | Hasan, S.S., Singh, S., Parikh, R.Y., Dharne, M.S., Patole, M.S., Prasad, B.L.V., Shouche, Y.S., Bacterial synthesis of copper/copper oxide nanoparticles (2008) J Nanosci Nanotechnol, 8, pp. 3191-3196 | |
dc.description | Haverkamp, R.G., Marshall, A.T., van Agterveld, D., Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo (2007) J Nanopart Res, 9, pp. 697-700 | |
dc.description | Hofacker, A.F., Voegelin, A., Kaegi, R., Weber, F.-A., Kretzschmar, R., Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil (2012) Geochim Cosmochim Acta, , (Available online 15 November 2012) | |
dc.description | Hofacker, A., Voegelin, A., Behrens, S., Kappler, A., Kaegi, R., Kretzschmar, R., Biogenic copper and metal sulphide colloid formation in a contaminated floodplain soil. 14. 5 Abstract Volume: 10th Swiss Geoscience Meeting (2012) Environmental Biogeosciences, , Bern, 16-17th November 2012 | |
dc.description | Abstr. 14. 5 | |
dc.description | Honary, S., Barabadi, H., Gharaeifathabad, E., Naghibi, F., Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii (2012) Dig J Nanomat Biostruct, 7, pp. 999-1005 | |
dc.description | Hosseini, M.R., Schaffie, M., Pazouki, M., Darezereshki, E., Ranjbar, M., Biologically synthesizeised copper sulfide nanoparticles: production and characterization (2012) Mat Sci Semicond Proc, 15, pp. 222-225 | |
dc.description | Huang, C.-C., Lo, S.-L., Lien, H.-L., Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant (2012) Chem Eng J, 203, pp. 95-100 | |
dc.description | Iwahori, K., Takagi, R., Kishimoto, N., Yamashita, I., A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin (2011) Mat Lett, 65, pp. 3245-3247 | |
dc.description | Jha, A.K., Prasad, K., Prasad, K., Biosynthesis of Sb2O3 nanoparticles: a low-cost green approach (2009) Biotechnol J, 4, pp. 1582-1585 | |
dc.description | Jia, B., Mei, Y., Cheng, L., Zhou, J., Zhang, L., Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction (2012) Appl Mat Iterfaces, 4, pp. 2897-2902 | |
dc.description | Ku, G., Zhou, M., Song, S.L., Huang, Q., Hazle, J., Li, C., Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm (2012) ACS Nano, 6, pp. 7489-7496 | |
dc.description | Lee, H.J., Lee, G., Jang, N.R., Yun, J.M., Song, J.Y., Kim, B.S., Biological synthesis of copper nanoparticles using plant extract (2011) Nanotech-2011 (NSTI Publ.), 1, pp. 371-374 | |
dc.description | Li, L., Liang, J., Tao, Z., Chen, J., CuO particles and plates: synthesis and gas-sensor application (2008) Mater Res Bull, 43, pp. 2380-2385 | |
dc.description | Li, F., Wu, J., Qin, Q., Li, Z., Huang, X., Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures (2010) Powder Technol, 198, pp. 267-274 | |
dc.description | Li, Y.J., Chiu, C.Y., Huang, Y., Biomimetic synthesis of inorganic materials and their applications (2011) Pure Appl Chem, 83, pp. 111-125 | |
dc.description | Longano, D., Ditaranto, N., Cioffi, N., Di Niso, F., Sibillano, T., Ancona, A., Conte, A., Torsi, L., Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging (2012) Anal Bioanal Chem, 403, pp. 1179-1186 | |
dc.description | Lu, Y., Meng, X., Yi, G., Jia, J., In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition (2011) J Colloid Interface Sci, 356, pp. 726-733 | |
dc.description | Majumber, D.R., Bioremediation: copper Nanoparticles from electronic-waste (2012) Inter J Eng Sci Technol, 4, pp. 4380-4389 | |
dc.description | Manceau, A., Nagy, K.L., Marcus, M.A., Lanson, M., Geoffroy, N., Jacquet, T., Kirpichtchikova, T., Formation of metallic copper nanoparticles at the soil-root interface (2008) Environ Sci Technol, 42, pp. 1766-1777 | |
dc.description | Manceau, A., Nagy, K.L., Marcus, M.A., Lanson, M., Geoffroy, N., Jacquet, T., Kirpichtchikova, T., Formation of metallic copper nanoparticles at the soil-root interface (2008) Environ Sci Technol, 42 (5), pp. 1766-1772 | |
dc.description | Mandal, D., Bolander, M.E., Mukhopadhyay, D., Sarkar, G., Mukherjee, P., The use of microorganisms for the formation of metal nanoparticles and their application (2006) Appl Microbiol Biotechnol, 69, pp. 485-492 | |
dc.description | Marcato, P.D., Durán, N., Biogenic silver nanoparticles: applications in medicines and textiles and their health implications (2011) Metal Nanoparticles in Microbiology, pp. 249-267. , M. Rai, N. Durán (Eds.), Germany: Springer | |
dc.description | Matten, A., Some methodologies used for the synthesis of cuprous oxide: a review (2008) J Pak Mater Soc, 2, pp. 40-43 | |
dc.description | Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., Nies, D.H., Survival of bacteria on metallic copper surfaces in a hospital trial (2010) Appl Microbiol Biotech, 87, pp. 1875-1879 | |
dc.description | Mitsudome, T., Mikami, Y., Ebata, K., Mizugaki, T., Jitsukawa, K., Kaneda, K., Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols (2008) Chem Commun, 39, pp. 4804-4806 | |
dc.description | Mohanpuria, P., Rana, N.K., Yadav, S.K., Biosynthesis of nanoparticles: technological concepts and future applications (2008) J Nanopart Res, 10, pp. 507-517 | |
dc.description | Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Islamkhan, M., Kumar, R., Sastry, M., Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum (2002) Chem Bio Chem, 3, pp. 461-463 | |
dc.description | Narayanan, K.B., Sakthivel, N., Biological synthesis of metal nanoparticles by microbes (2010) Adv Colloid Interface Sci, 156, pp. 1-13 | |
dc.description | Narayanan, K.B., Sakthivel, N., Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents (2011) Adv Colloid Interface Sci, 169, pp. 59-79 | |
dc.description | Prabhu, S., Poulose, E., Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects (2012) Intern Nano Lett, 2, p. 32 | |
dc.description | Prasad, K., Jha, A.K., Prasad, K., Kulkarni, A.R., Can microbes mediate nano-transformation? (2010) Indian J Phys, 84, pp. 1355-1360 | |
dc.description | Raffi, M., Mehrwan, S., Bhatti, T.M., Akhter, J.I., Hameed, A., Yawar, W., Hasan, M.M., Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli (2010) Ann Microbiol, 60, pp. 75-80 | |
dc.description | Rai, M., Yadav, A., Gade, A., Current trends in phytosynthesis of metal nanoparticles (2008) Crit Rev Biotechnol, 28, pp. 277-284 | |
dc.description | Ramanathan R Bhargava, S.K., Bansal, V., Biological synthesis of copper/copper oxide nanoparticles (2011) Chemca Conference, 466. , www.conference.net.au/chemeca2011/papers/466.pdf | |
dc.description | Ramu, V.G., Bordoloi, A., Nagaiah, T.C., Schuhmann, W., Muhler, M., Cabrele, C., (2012) Appl Catal A, 431-432, pp. 88-94 | |
dc.description | Ramyadevi, J., Jeyasubramanian, K., Marilani, A., Rajakumar, G., Rahuman, A.A., (2012) Mat Lett, 71, pp. 114-116 | |
dc.description | Sangeetha, G., Rajeshwari, S., Rajendran, V., Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties (2012) Spectrochima Acta Part A, 97, pp. 1140-1144 | |
dc.description | Santhanalakshmi, J., Parimala, L., The copper nanoparticles catalysed reduction of substituted nitrobenzenes: effect of nanoparticle stabilizers (2012) J Nanopart Res, 14, p. 1090 | |
dc.description | Santo, C.E., Quaranta, D., Grass, G., Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage (2012) Microbiologyopen, 1 (1), pp. 46-52 | |
dc.description | Seabra, A.B., Durán, N., Microbial syntheses of metallic sulfide nanoparticles: an overview (2012) Curr Biotechnol, 1, pp. 287-296 | |
dc.description | Seabra, A.B., Haddad, P., Durán, N., Biogenic synthesis of nanostructurated iron compounds: Applications and perspectives (2013) IET-Nanobiotechnology in press | |
dc.description | Sing, J., Srivastava, M., Roychoudhury, A., Lee, D.W., Lee, S.H., Malhotra, B.D., Bienzyme-functionalized monodispersed biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application (2013) J Phys Chem B, 117, pp. 141-152 | |
dc.description | Singh, A.V., Patil, R., Anand, A., Milani, P., Gade, W.N., Biological synthesis of copper oxide nano particles using Escherichia coli (2010) Curr Nanosci, 6, pp. 365-369 | |
dc.description | Sinha, S., Pan, L., Chanda, P., Sen, S.K., Nanoparticles fabrication using ambient biological resources (2009) J Appl Biosci, 19, pp. 1113-1130 | |
dc.description | Srivastava, A., Antiviral activity of copper complexes of isoniazid against RNA tumor viruses (2009) Resonance, 14 (8), pp. 754-760 | |
dc.description | Srivastava, M., Sing, J., Mishra, R.K., Ojha, A.K., Electro-optical and magnetic properties of monodispersed colloidal Cu2O nanoparticles (2013) J Alloy Compd, 555, pp. 123-130 | |
dc.description | Svintsitskiy, D.A., Chupakhin, A.P., Slavinskaya, E.M., Stonkus, O.A., Stadnichenko, A.I., Koscheev, S.V., Boronin, A.I., Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation (2013) J Mol Catal A, 368-369, pp. 95-106 | |
dc.description | Thakkar, K.N., Mhatre, S.S., Parikh, R.Y., Biological synthesis of metallic nanoparticles (2010) Nanomedicine NBM, 6, pp. 257-262 | |
dc.description | Tilaki, R.M., Iraji Zad, A., Mahadavi, S.M., Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids (2007) Appl Phys A, 88, pp. 415-419 | |
dc.description | Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., Webster, T.J., Bacterial effect of iron oxide nanoparticles on Staphylococcus aureus (2010) Int J Nanomed, 5, pp. 277-283 | |
dc.description | Usha, R., Prabu, E., Palaniswamy, M., Venil, C.K., Rajendran, K.R., Synthesis of metal oxide nano particles by Streptomyces sp. for development of antimicrobial textiles (2010) Glob J Biotechnol Biochem, 5, pp. 153-160 | |
dc.description | Varshney, R., Bhadauria, S., Gaur, M.S., Pasricha, R., Characterization of copper nanoparticles synthesized by a novel microbiological method (2010) JOM-J Miner Met Mater Soc, 62, pp. 102-104 | |
dc.description | Varshney, R., Bhadauria, S., Gaur, M.S., Pasricha, R., Copper nanoparticles synthesis from electroplating industry effluent (2011) Nano Biomed Eng, 3, pp. 115-119 | |
dc.description | Varshney, R., Bhadauria, S., Gaur, M.S., A review: biological synthesis of silver and copper nanoparticles (2012) Nano Biomed Eng, 4, pp. 99-106 | |
dc.description | Veerapandian, M., Sadhasivam, S., Choi, J., Yun, K., Glucosamine functionalized copper nanoparticles: preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation (2012) Chem Eng J, 209, pp. 558-567 | |
dc.description | Wang, S., Huang, X., He, Y., Huang, H., Wu, Y., Hou, L., Liu, X., Huang, B., Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene (2012) Carbon, 50, pp. 2119-2125 | |
dc.description | Zhang, K., Fabrication of copper nanoparticles/graphene oxide composites for surface-enhanced Raman scattering (2012) Appl Surf Sci, 258, pp. 7327-7329 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Biotechnology Letters | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Biogenic Nanoparticles: Copper, Copper Oxides, Copper Sulphides, Complex Copper Nanostructures And Their Applications | |
dc.type | Artículos de revistas | |