dc.creatorRubilar O.
dc.creatorRai M.
dc.creatorTortella G.
dc.creatorDiez M.C.
dc.creatorSeabra A.B.
dc.creatorDuran N.
dc.date2013
dc.date2015-06-25T19:15:54Z
dc.date2015-11-26T15:13:50Z
dc.date2015-06-25T19:15:54Z
dc.date2015-11-26T15:13:50Z
dc.date.accessioned2018-03-28T22:23:55Z
dc.date.available2018-03-28T22:23:55Z
dc.identifier
dc.identifierBiotechnology Letters. , v. 35, n. 9, p. 1365 - 1375, 2013.
dc.identifier1415492
dc.identifier10.1007/s10529-013-1239-x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84880974100&partnerID=40&md5=68e88b00a259a04b54d2f063e47805fb
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89359
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89359
dc.identifier2-s2.0-84880974100
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258728
dc.descriptionCopper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed. © 2013 Springer Science+Business Media Dordrecht.
dc.description35
dc.description9
dc.description1365
dc.description1375
dc.descriptionAhmad, A., Jagadale, T., Dhas, V., Khan, S., Patil, S., Pasricha, R., Ravi, V., Ogale, S., Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CuAlO2 (2007) Adv Mater, 19, pp. 3295-3299
dc.descriptionAsmathunisha, N., Kathiresan, K., A review on biosynthesis of nanoparticles by marine organisms (2013) Colloids Surf B, 103, pp. 283-287
dc.descriptionAthanassiou, E.K., Grass, R.N., Stark, W.J., Large-scale production of carbon-coated copper nanoparticles for sensor applications (2006) Nanotechnology, 17, p. 1668
dc.descriptionBajpai, S.K., Bajpai, M., Sharma, L., Copper nanoparticles loaded alginate-impregnated cotton fabric with antibacterial properties (2012) J Appl Polym Sci, 126, pp. E318-E325
dc.descriptionBasavaraja, S., Balaji, S.D., Lagashetty, A., Rajasab, A.H., Venkataraman, A., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum (2008) Mat Res Bull, 43, pp. 1164-1170
dc.descriptionBicer, M., Sisman, I., Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution (2010) Powder Technol, 198, pp. 279-284
dc.descriptionBlanco-Andujar, C., Tung, L.D., Thanh, N.T.K., Synthesis of nanoparticles for biomedical applications (2010) Annu Rep Prog Chem Sect A, 106, pp. 553-568
dc.descriptionBorkow, G., Zatcoff, R.C., Gabbay, J., Reducing the risk of skin pathologies in diabetics by using copper impregnated socks (2009) Med Hypotheses, 73, pp. 883-886
dc.descriptionBorkow, G., Gabbay, J., Dardik, R., Eidelman, A.I., Lavie, Y., Grunfeld, Y., Ikher, S., Marikovsky, M., Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings (2010) Wound Repair Regen, 18, pp. 266-275
dc.descriptionCady, N.C., Behnke, J.L., Strickland, A.D., Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro (2011) Adv Funct Mater, 21, pp. 2506-2514
dc.descriptionChandran, C.B., Subramanian, T.V., Felse, P.A., Chemometric optimization of parameters for biocatalytic reduction of copper ion by a crude enzyme lyzate of Saccharomyces cerevisiae grown under catabolic repression conditions (2001) Biochem Eng J, 8, pp. 31-37
dc.descriptionChatterjee, A.K., Sarkar, R.K., Chattopadhyay, A.P., Aich, P., Chakraborty, R., Basu, T., A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli (2012) Nanotechnology, 23, pp. 85-103
dc.descriptionCheon, J., Lee, J., Kim, J., Inkjet printing using copper nanoparticles synthesized by electrolysis (2012) Thin Solid Films, 520, pp. 2639-2643
dc.descriptionDewan, M., Kumar, A., Saxena, A., De, A., Mozumdar, S., Biginelli reaction catalyzed by copper nanoparticles (2012) PLoS ONE, 7, pp. e43078
dc.descriptionDuan, Z., Ma, G., Zhang, W., Preparation of copper nanoparticles and catalytic properties for the reduction of aromatic nitro compounds (2012) Bull Korean Chem Soc, 33, pp. 4003-4006
dc.descriptionDurán, N., Marcato, P.D., Biotechnological routes to metallic nanoparticles production: mechanistics aspects, antimicrobial activity, toxicity and industrial applications (2012) Nano-Antimicrobials: Progress and Prospects vol Part 3, pp. 337-374. , M. Rai and N. Cioffi (Eds.), Berlin: Springer
dc.descriptionDurán, N., Seabra, A.B., Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms (2012) Appl Microbiol Biotechnol, 95, pp. 275-288
dc.descriptionDurán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959
dc.descriptionDurán, N., Marcato, P.D., Ingle, A., Gade, A., Rai, M., Fungi mediated synthesis of silver nanoparticles: characterization processes and applications (2010) Progress in Mycology, pp. 425-449. , M. Rai, G. Kövics (Eds.), Jodhpur: Scientific Publishers
dc.descriptionDurán, N., Marcato, P.D., Durán, M., Yadav, A., Gade, A., Rai, M., Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants (2011) Appl Microbiol Biotechnol, 90, pp. 1609-1624
dc.descriptionGade, A., Ingle, A., Whiteley, C., Rai, M., Mycogenic metal nanoparticles: progress and applications (2010) Biotechnol Lett, 32, pp. 593-600
dc.descriptionGomes, T., Araújo, O., Pereira, R., Almeida, A.C., Cravo, A., Bebianno, M.J., Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis (2013) Mar Environ Res, 84, pp. 51-59
dc.descriptionGopalakrishnan, K., Ramesh, C., Ragunathan, V., Thamilselvan, M., Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline (2012) Digest J Nanomat Biostruct, 7, pp. 833-839
dc.descriptionGrass, G., Rensing, C., Solioz, M., Metallic copper as an antimicrobial surface (2011) Appl Environ Microbiol, 77 (5), pp. 1541-1547
dc.descriptionGuajardo-Pacheco Ma, J., Morales-Sanchez, J.E., Gonzalez-Hernandez, J., Ruiz, F., Synthesis of copper nanoparticles using soybeans as a chelant agent (2010) Mat Lett, 64, pp. 1361-1364
dc.descriptionGunalan, S., Sivaraj, R., Venckatesh, R., Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties (2012) Spectrochim Acta A, 97, pp. 1140-1144
dc.descriptionGupta, R.K., Kusuma, D.Y.K., Lee, O.S., Srinivasan, M.P., Copper nanoparticles embedded in a polyimide film for non-volatile memory applications (2012) Mater Lett, 68, pp. 287-289
dc.descriptionHarne, S., Sharma, A., Dhaygude, M., Joglekar, S., Kodam, K., Hudlikar, M., Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells (2012) Colloids Surf B, 95, pp. 284-288
dc.descriptionHasan, S.S., Singh, S., Parikh, R.Y., Dharne, M.S., Patole, M.S., Prasad, B.L.V., Shouche, Y.S., Bacterial synthesis of copper/copper oxide nanoparticles (2008) J Nanosci Nanotechnol, 8, pp. 3191-3196
dc.descriptionHaverkamp, R.G., Marshall, A.T., van Agterveld, D., Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo (2007) J Nanopart Res, 9, pp. 697-700
dc.descriptionHofacker, A.F., Voegelin, A., Kaegi, R., Weber, F.-A., Kretzschmar, R., Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil (2012) Geochim Cosmochim Acta, , (Available online 15 November 2012)
dc.descriptionHofacker, A., Voegelin, A., Behrens, S., Kappler, A., Kaegi, R., Kretzschmar, R., Biogenic copper and metal sulphide colloid formation in a contaminated floodplain soil. 14. 5 Abstract Volume: 10th Swiss Geoscience Meeting (2012) Environmental Biogeosciences, , Bern, 16-17th November 2012
dc.descriptionAbstr. 14. 5
dc.descriptionHonary, S., Barabadi, H., Gharaeifathabad, E., Naghibi, F., Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii (2012) Dig J Nanomat Biostruct, 7, pp. 999-1005
dc.descriptionHosseini, M.R., Schaffie, M., Pazouki, M., Darezereshki, E., Ranjbar, M., Biologically synthesizeised copper sulfide nanoparticles: production and characterization (2012) Mat Sci Semicond Proc, 15, pp. 222-225
dc.descriptionHuang, C.-C., Lo, S.-L., Lien, H.-L., Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant (2012) Chem Eng J, 203, pp. 95-100
dc.descriptionIwahori, K., Takagi, R., Kishimoto, N., Yamashita, I., A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin (2011) Mat Lett, 65, pp. 3245-3247
dc.descriptionJha, A.K., Prasad, K., Prasad, K., Biosynthesis of Sb2O3 nanoparticles: a low-cost green approach (2009) Biotechnol J, 4, pp. 1582-1585
dc.descriptionJia, B., Mei, Y., Cheng, L., Zhou, J., Zhang, L., Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction (2012) Appl Mat Iterfaces, 4, pp. 2897-2902
dc.descriptionKu, G., Zhou, M., Song, S.L., Huang, Q., Hazle, J., Li, C., Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm (2012) ACS Nano, 6, pp. 7489-7496
dc.descriptionLee, H.J., Lee, G., Jang, N.R., Yun, J.M., Song, J.Y., Kim, B.S., Biological synthesis of copper nanoparticles using plant extract (2011) Nanotech-2011 (NSTI Publ.), 1, pp. 371-374
dc.descriptionLi, L., Liang, J., Tao, Z., Chen, J., CuO particles and plates: synthesis and gas-sensor application (2008) Mater Res Bull, 43, pp. 2380-2385
dc.descriptionLi, F., Wu, J., Qin, Q., Li, Z., Huang, X., Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures (2010) Powder Technol, 198, pp. 267-274
dc.descriptionLi, Y.J., Chiu, C.Y., Huang, Y., Biomimetic synthesis of inorganic materials and their applications (2011) Pure Appl Chem, 83, pp. 111-125
dc.descriptionLongano, D., Ditaranto, N., Cioffi, N., Di Niso, F., Sibillano, T., Ancona, A., Conte, A., Torsi, L., Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging (2012) Anal Bioanal Chem, 403, pp. 1179-1186
dc.descriptionLu, Y., Meng, X., Yi, G., Jia, J., In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition (2011) J Colloid Interface Sci, 356, pp. 726-733
dc.descriptionMajumber, D.R., Bioremediation: copper Nanoparticles from electronic-waste (2012) Inter J Eng Sci Technol, 4, pp. 4380-4389
dc.descriptionManceau, A., Nagy, K.L., Marcus, M.A., Lanson, M., Geoffroy, N., Jacquet, T., Kirpichtchikova, T., Formation of metallic copper nanoparticles at the soil-root interface (2008) Environ Sci Technol, 42, pp. 1766-1777
dc.descriptionManceau, A., Nagy, K.L., Marcus, M.A., Lanson, M., Geoffroy, N., Jacquet, T., Kirpichtchikova, T., Formation of metallic copper nanoparticles at the soil-root interface (2008) Environ Sci Technol, 42 (5), pp. 1766-1772
dc.descriptionMandal, D., Bolander, M.E., Mukhopadhyay, D., Sarkar, G., Mukherjee, P., The use of microorganisms for the formation of metal nanoparticles and their application (2006) Appl Microbiol Biotechnol, 69, pp. 485-492
dc.descriptionMarcato, P.D., Durán, N., Biogenic silver nanoparticles: applications in medicines and textiles and their health implications (2011) Metal Nanoparticles in Microbiology, pp. 249-267. , M. Rai, N. Durán (Eds.), Germany: Springer
dc.descriptionMatten, A., Some methodologies used for the synthesis of cuprous oxide: a review (2008) J Pak Mater Soc, 2, pp. 40-43
dc.descriptionMikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., Nies, D.H., Survival of bacteria on metallic copper surfaces in a hospital trial (2010) Appl Microbiol Biotech, 87, pp. 1875-1879
dc.descriptionMitsudome, T., Mikami, Y., Ebata, K., Mizugaki, T., Jitsukawa, K., Kaneda, K., Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols (2008) Chem Commun, 39, pp. 4804-4806
dc.descriptionMohanpuria, P., Rana, N.K., Yadav, S.K., Biosynthesis of nanoparticles: technological concepts and future applications (2008) J Nanopart Res, 10, pp. 507-517
dc.descriptionMukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Islamkhan, M., Kumar, R., Sastry, M., Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum (2002) Chem Bio Chem, 3, pp. 461-463
dc.descriptionNarayanan, K.B., Sakthivel, N., Biological synthesis of metal nanoparticles by microbes (2010) Adv Colloid Interface Sci, 156, pp. 1-13
dc.descriptionNarayanan, K.B., Sakthivel, N., Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents (2011) Adv Colloid Interface Sci, 169, pp. 59-79
dc.descriptionPrabhu, S., Poulose, E., Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects (2012) Intern Nano Lett, 2, p. 32
dc.descriptionPrasad, K., Jha, A.K., Prasad, K., Kulkarni, A.R., Can microbes mediate nano-transformation? (2010) Indian J Phys, 84, pp. 1355-1360
dc.descriptionRaffi, M., Mehrwan, S., Bhatti, T.M., Akhter, J.I., Hameed, A., Yawar, W., Hasan, M.M., Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli (2010) Ann Microbiol, 60, pp. 75-80
dc.descriptionRai, M., Yadav, A., Gade, A., Current trends in phytosynthesis of metal nanoparticles (2008) Crit Rev Biotechnol, 28, pp. 277-284
dc.descriptionRamanathan R Bhargava, S.K., Bansal, V., Biological synthesis of copper/copper oxide nanoparticles (2011) Chemca Conference, 466. , www.conference.net.au/chemeca2011/papers/466.pdf
dc.descriptionRamu, V.G., Bordoloi, A., Nagaiah, T.C., Schuhmann, W., Muhler, M., Cabrele, C., (2012) Appl Catal A, 431-432, pp. 88-94
dc.descriptionRamyadevi, J., Jeyasubramanian, K., Marilani, A., Rajakumar, G., Rahuman, A.A., (2012) Mat Lett, 71, pp. 114-116
dc.descriptionSangeetha, G., Rajeshwari, S., Rajendran, V., Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties (2012) Spectrochima Acta Part A, 97, pp. 1140-1144
dc.descriptionSanthanalakshmi, J., Parimala, L., The copper nanoparticles catalysed reduction of substituted nitrobenzenes: effect of nanoparticle stabilizers (2012) J Nanopart Res, 14, p. 1090
dc.descriptionSanto, C.E., Quaranta, D., Grass, G., Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage (2012) Microbiologyopen, 1 (1), pp. 46-52
dc.descriptionSeabra, A.B., Durán, N., Microbial syntheses of metallic sulfide nanoparticles: an overview (2012) Curr Biotechnol, 1, pp. 287-296
dc.descriptionSeabra, A.B., Haddad, P., Durán, N., Biogenic synthesis of nanostructurated iron compounds: Applications and perspectives (2013) IET-Nanobiotechnology in press
dc.descriptionSing, J., Srivastava, M., Roychoudhury, A., Lee, D.W., Lee, S.H., Malhotra, B.D., Bienzyme-functionalized monodispersed biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application (2013) J Phys Chem B, 117, pp. 141-152
dc.descriptionSingh, A.V., Patil, R., Anand, A., Milani, P., Gade, W.N., Biological synthesis of copper oxide nano particles using Escherichia coli (2010) Curr Nanosci, 6, pp. 365-369
dc.descriptionSinha, S., Pan, L., Chanda, P., Sen, S.K., Nanoparticles fabrication using ambient biological resources (2009) J Appl Biosci, 19, pp. 1113-1130
dc.descriptionSrivastava, A., Antiviral activity of copper complexes of isoniazid against RNA tumor viruses (2009) Resonance, 14 (8), pp. 754-760
dc.descriptionSrivastava, M., Sing, J., Mishra, R.K., Ojha, A.K., Electro-optical and magnetic properties of monodispersed colloidal Cu2O nanoparticles (2013) J Alloy Compd, 555, pp. 123-130
dc.descriptionSvintsitskiy, D.A., Chupakhin, A.P., Slavinskaya, E.M., Stonkus, O.A., Stadnichenko, A.I., Koscheev, S.V., Boronin, A.I., Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation (2013) J Mol Catal A, 368-369, pp. 95-106
dc.descriptionThakkar, K.N., Mhatre, S.S., Parikh, R.Y., Biological synthesis of metallic nanoparticles (2010) Nanomedicine NBM, 6, pp. 257-262
dc.descriptionTilaki, R.M., Iraji Zad, A., Mahadavi, S.M., Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids (2007) Appl Phys A, 88, pp. 415-419
dc.descriptionTran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., Webster, T.J., Bacterial effect of iron oxide nanoparticles on Staphylococcus aureus (2010) Int J Nanomed, 5, pp. 277-283
dc.descriptionUsha, R., Prabu, E., Palaniswamy, M., Venil, C.K., Rajendran, K.R., Synthesis of metal oxide nano particles by Streptomyces sp. for development of antimicrobial textiles (2010) Glob J Biotechnol Biochem, 5, pp. 153-160
dc.descriptionVarshney, R., Bhadauria, S., Gaur, M.S., Pasricha, R., Characterization of copper nanoparticles synthesized by a novel microbiological method (2010) JOM-J Miner Met Mater Soc, 62, pp. 102-104
dc.descriptionVarshney, R., Bhadauria, S., Gaur, M.S., Pasricha, R., Copper nanoparticles synthesis from electroplating industry effluent (2011) Nano Biomed Eng, 3, pp. 115-119
dc.descriptionVarshney, R., Bhadauria, S., Gaur, M.S., A review: biological synthesis of silver and copper nanoparticles (2012) Nano Biomed Eng, 4, pp. 99-106
dc.descriptionVeerapandian, M., Sadhasivam, S., Choi, J., Yun, K., Glucosamine functionalized copper nanoparticles: preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation (2012) Chem Eng J, 209, pp. 558-567
dc.descriptionWang, S., Huang, X., He, Y., Huang, H., Wu, Y., Hou, L., Liu, X., Huang, B., Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene (2012) Carbon, 50, pp. 2119-2125
dc.descriptionZhang, K., Fabrication of copper nanoparticles/graphene oxide composites for surface-enhanced Raman scattering (2012) Appl Surf Sci, 258, pp. 7327-7329
dc.languageen
dc.publisher
dc.relationBiotechnology Letters
dc.rightsfechado
dc.sourceScopus
dc.titleBiogenic Nanoparticles: Copper, Copper Oxides, Copper Sulphides, Complex Copper Nanostructures And Their Applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución