Actas de congresos
Modeling Vapor Liquid Equilibrium Of Ionic Liquids + Gas Binary Systems At High Pressure With Cubic Equations Of State
Registro en:
Brazilian Journal Of Chemical Engineering. , v. 30, n. 1, p. 63 - 73, 2013.
1046632
10.1590/S0104-66322013000100008
2-s2.0-84875417272
Autor
Freitas A.C.D.
Cunico L.P.
Aznar M.
Guirardello R.
Institución
Resumen
Ionic liquids (IL) have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2). The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively. 30 1 63 73 Alvarez, V.H., Larico, R., Ianos, Y., Aznar, M., Parameter estimation for VLE calculation by global minimization: The genetic algorithm (2008) Braz. J. Chem. Eng., 25, p. 409 Anderson, J.L., Dixon, J.K., Brennecke, J.F., Solubility of CO2, CH4, C2H6, C2H4, O2 and N2 in 1-hexyl-3-methylpyridinium bis (trifluoromethylsulfonyl) imide: Comparison to other ionic liquids (2007) Acc. Chem. Res., 40, p. 1208 Anthony, J.L., Anderson, J.L., Maginn, E.J., Brennecke, J.F., Anion effects on gas solubility in ionic liquids (2005) J. Phys. Chem., B, 109, p. 6366 Anthony, J.L., Maginn, E.J., Brennecke, J.F., Solubilities and thermodynamics properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate (2002) J. Phys. Chem., B, 106, p. 7315 Anthony, J.L., Maginn, E.J., Brennecke, J.F., Solution thermodynamics of imidazolium based ionic liquids and water (2001) J. Phys. Chem., B, 105, p. 10942 Arce, P.F., Robles, P.A., Graber, T.A., Aznar, M., Modeling of high-pressure vapor-liquid equilibrium in ionic liquids + gas systems using the PRSV equation of state (2010) Fluid Phase Equilib., 295, p. 9 Bermudez, M.D., Jiménez, A.E., Sanes, J., Carrion, J.F., Ionic liquid as advanced lubricant fluids (2009) Molecules, 14, p. 2888 Blanchard, L.A., Brennecke, J.F., Recovery of organic products from ionic liquids using supercritical carbon dioxide (2001) Ind. Eng. Chem. Res., 40, p. 287 Blanchard, L.A., Gu, Z., Brennecke, J.F., High pressure phase behavior of ionic liquids/CO2 systems (2001) J. Phys. Chem., B, 105, p. 2437 Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F., Green processing using ionic liquids and CO2 (1999) Nature, 399, p. 28 Cadena, C., Anthony, J.L., Shah, J.K., Morrow, T.I., Brennecke, J.F., Maginn, E.J., Why is CO2 so soluble in imidazolium based ionic liquids? (2004) J. Am. Chem. Soc., 126, p. 5300 Carvalho, P.J., Álvarez, V.H., Machado, J.J.B., Pauly, J., Daridon, J.L., Marrucho, I.M., Aznar, M., Coutinho, J.A.P., High pressure phase behavior of carbon dioxide in 1-alkyl-3- methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids (2009) J. Supercrit. Fluids, 48, p. 99 Carvalho, P.J., Álvarez, V.H., Marrucho, I.M., Aznar, M., Coutinho, J.A.P., High pressure phase behavior of carbon dioxide in 1-butyl-3- methylimidazolium bis (trifluormethylsulfonyl) imide and 1-butyl- 3methylimidazolium dicyanamide ionic liquids (2009) J. Supercrit. Fluids, 50, p. 105 Chilla, L.O.P., Lazzús, J.A., Pérez-Ponce, A.A., Particle swarm modeling of vapor liquid equilibrium data of binary system containing CO2 + imidazolium ionic liquids based on bis [(trifluoromethyl)sulfonyl] imide anion (2011) J. Eng. Thermophys., 20, p. 487 (2000) Information and Data Evaluation Manager, , DIADEM Public v. 1.2 - DIPPR® - Design Institute for Physical Property Data Fadeev, A.G., Meagher, M.M., Opportunities for ionic liquids in recovery of biofuels (2001) Chem. Commun., 295, p. 295 Florusse, L.J., Raeissi, S., Peters, C.J., High-pressure phase behavior of ethane with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (2008) J. Chem. Eng. Data, 53, p. 1283 Gamse, T., Marr, R., High-pressure phase equilibria of the binary systems carvone-carbon dioxide and limonene-carbon dioxide at 30 (2000) Fluid Phase Equilib., 171, p. 165 Gamse, T., Marr, R., Phase equilibrium properties of the 1-phenylethanol-carbon dioxide and 2-octanol-carbon dioxide binary system at 303.15, 313.15 and 323.15 K (2001) J. Chem. Eng. Data, 46, p. 117 Hermann, W.A., Bohn, V.P.W., Heck reaction catalized by phospha-palladacycles in nonaqueous ionic liquids (1999) J. Organomet. Chem., 572, p. 141 Hert, D.G., Anderson, J.L., Aki, S.N.V.K., Brennecke, J.F., Enhancement of oxygen and methane solubility in 1-hexyl-3- methylimidaxolium bis(trifluoromethylsulfonyl)imide using carbon dioxide (2005) Chem. Comm., 20, p. 2603 Jang, S., Cho, D.W., Im, T., Kim, H., High pressure phase behavior of CO2+1-butyl-3- methylimidazolium chloride system (2010) Fluid Phase Equilib., 299, p. 216 Jessop, P.G., Leitner, W., (1999) Chemical Synthesis Using Supercritical Fluids, , Wiley-VCH: Weinheim Kroon, M.C., Shariati, A., Costantini, M., Van Spronsen, J., Witkamp, G.J., Sheldon, R.A., Peters, C.J., High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide + 1-butyl-3-methylimidazolium tetrafluoroborate (2005) J. Chem. Eng. Data, 50, p. 173 Liu, Z., Wu, W., Han, B., Dong, Z., Zhao, G., Wang, J., Jiang, T., Yang, G., Study on the phase behaviors, viscosities, and thermodynamic properties of CO2/[C4mim][PF6]/methanol system at elevated pressure (2003) Chem. Eur. J., 9, p. 3897 Nelder, J.A., Mead, R., A Simplex method for function minimization (1965) Comput. J., 7, p. 308 Nwosu, S.O., Schleicher, J.C., Scurto, A.M., Highpressure phase equilibria for the synthesis of ionic liquids in compressed CO2 for 1-hexyl-3methylimidazolium bromide with 1-bromohexane and 1 methylimidazolium (2009) J. Supercrit. Fluids, 51, p. 1 Peng, D.Y., Robinson, D.B., A new two-constant equation of state (1976) Ind. Eng. Chem. Res., 15, p. 59 Petkov, S., Pfohl, O., Brunner, G., (2000) PE 2000 Allows for Implementation of EOS by Users, , 18th European Seminar on Applied Thermodynamics KutnáHora, Czech Republic, June 8-11, 2000. Abstract 2 Pfohl, O., Petkov, S., Brunner, G., (2000) PE2000: A Powerful Tool to Correlate Phase Equilibrium, , Herbert UtzVerlag, München Ren, W., Scurto, A.M., Global phase behavior of imidazolium ionic liquids in compressed 1,1,1,2-tetrafluoroethane (R-134a) (2009) AIChE J., 55, p. 486 Ren, W., Scurto, A.M., Phase equilibria of imidazolium ionic liquids and the refrigerant gas 1,1,1,2 - Tetrafluoroethane (R-134a) (2009) Fluid Phase Equilib., 286, p. 1 Ren, W., Sensenich, B., Scurto, A.M., High-pressure phase equilibria of {carbon dioxide (CO2) +n-alkylimidazolium bis(trifluoromethylsulfonyl) amide} ionic liquids (2010) J. Chem. Thermodyn., 42, p. 305 Schwarz, C.E., Nieuwoudt, L., Phase equilibrium of propane and alkanes. Part II: Hexatriacontane through hexacontane (2003) J. Supercrit. Fluid, 27, p. 145 Schwarz, C.E., Nieuwoudt, L., Phase equilibrium of propane and alkanes. Part I. Experimental procedures, dotriacontane equilibrium and EOS modeling (2003) J. Supercrit. Fluid, 27, p. 133 Scurto, A.M., Leitner, W., Expanding the useful range of ionic liquids: Melting point depression of organic salts with carbon dioxide for biphasic catalytic reactions (2006) Chem. Comm., 35, p. 3681 Scurto, A.M., Newton, E., Weikel, R.R., Draucker, L., Hallett, J., Liotta, C.L., Leitner, W., Eckert, C.A., Melting point depression of ionic liquids with CO2: Phase equilibria (2008) Ind. Eng. Chem. Res., 47, p. 493 Seddon, K.R., Room temperature ionic liquids: Neoteric solvents for clean catalysis (1995) Kinet. Catal., 37, p. 693 Shariati, A., Peters, C.J., High pressure phase behavior of systems with ionic liquids: Measurements and modeling of the binary systems fluoroform + 1-ethyl-3-methylimidazolium hexafluorophosphate (2003) J. Supercrit. Fluids, 25, p. 109 Shariati, A., Gutkowski, K., Peters, C.J., Comparison of the phase behavior of some selected binary systems with ionic liquids (2005) Phys. Chem. Mol. Thermodyn., 51, p. 1532 Shariati, A., Peters, C.J., High pressure phase equilibria of systems with ionic liquids (2005) J. Supercrit. Fluids, 34, p. 171 Shariati, A., Peters, C.J., High-pressure phase behavior of systems with ionic liquids: Part III. The binary system carbon dioxide + 1-hexyl-3-methylimidazolium hexafluorophosphate (2004) J. Supercrit. Fluids, 30, p. 139 Shin, E.K., Lee, B.C., Lim, J.S., High pressure solubilities of carbon dioxide in ionic liquids: 1-alkil-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (2008) J. Supercrit. Fluids, 45, p. 282 Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state (1972) Chem. Eng. Sci., 27, p. 1197 Solinas, M., Pfaltz, A., Cozzi, P.G., Leitner, W., Enantio-selective hydrogenation of imines in ionic liquid/carbon dioxide media (2004) J. Am. Chem. Soc., 126, p. 16142 Souza, R.F., Padilha, J.C., Gonçalves, R.S., Dupont, J., Room temperature dialkylimidazolium ionic liquids-based fuel cells. Electrochem (2003) Comm., 5, p. 728 Teodorescu, M., Lugo, L., Fernandez, J., Modeling of gas solubility data for HFCs-lubricant oil binary systems by means of the SRK equation of state (2003) Int. J. Thermophys., 24, p. 1043 Valderrama, J.O., Urbina, F., Faúndez, C.A., Gas Liquid equilibrium modeling of mixtures containing supercritical carbon dioxide and an ionic liquid (2012) J. Supercrit. Fluids, 64, p. 32 Valderrama, J.O., Reategui, A., Sanga, W.W., Thermodynamic consistency test of vapor-liquid equilibrium data for mixtures containing ionic liquids (2008) Ind. Eng. Chem. Res., 47, p. 1318 Valderrama, J.O., Robles, P.A., Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids (2007) Ind. Eng. Chem. Res., 46, p. 1338 Valderrama, J.O., Rojas, R.E., Critical properties of ionic liquids revisited (2009) Ind. Eng. Chem. Res., 48, p. 6890 Valderrama, J.O., Sanga, W.W., Lazzús, J.A., Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids (2008) Ind. Eng. Chem. Res., 47, p. 1318 Visser, A.E., Swatloskim, W.M., Reichert, W.M., Griffin, S.T., Rogers, R.D., Traditional extractants in nontraditional solvents: Groups 1 and 2 extraction by crown ethers in room temperature ionic liquids (2000) Ind. Eng. Chem. Res., 39, p. 3596 Welton, T., Room temperature ionic liquids. Solvents for synthesis and catalysis (1999) Chem. Rev., 99, p. 2071 Wong, D.S.H., Sandler, S.I., A theoretically correct mixing rule for cubic equations of state (1992) AIChE J., 38, p. 671 Wu, W., Li, W., Han, B., Zhang, Z., Jiang, T., Liu, Z., A green and effective method to synthesize ionic liquids: Supercritical CO2 Route (2005) Green Chem., 7, p. 701 Zhang, S., Chen, Y., Li, F., Lu, X., Dai, W., Mori, R., Fixation and conversion of CO2 using ionic liquids (2006) Catal. Today, 115, p. 61 Zhou, Z., Wang, T., Xing, H., Butyl-3-methylimidazolium chloride preparation in supercritical carbon dioxide (2006) Ind. Eng. Chem. Res., 45, p. 525