Artículos de revistas
Cogtra: A Deployable Mechanism For Cognitive Transmission Rate Adaptation In Ieee 802.11 Networks
Registro en:
Journal Of The Brazilian Computer Society. , v. 19, n. 4, p. 493 - 510, 2013.
1046500
10.1007/s13173-013-0113-y
2-s2.0-84893093669
Autor
Chaves L.J.
Madeira E.R.M.
Garcia I.C.
Institución
Resumen
Wireless local area networks have become vastly popular, and IEEE 802.11 is the chosen standard for almost all wireless devices. This standard specifies several modulation and channel coding techniques that must be implemented by all wireless interfaces to adapt to changes in wireless channels. As a result, these interfaces support multiple transmission data rates. However, this standard does not define how to dynamically select the appropriate data rate; instead, manufacturers can design and implement their own algorithms. Although several solutions have been proposed in the literature, only a few are used in practice. Moreover, their performance is still limited to specific conditions, such as highly dynamic environments. To tackle these challenges, this paper introduces CogTRA, which is a deployable mechanism built upon an existing cognitive framework called CogProt. Due to its self-adjustment functionality, CogTRA can work not only in stable but also in dynamic environments. It was implemented in the OpenWrt Linux distribution for embedded devices and evaluated through experiments using real network equipment. The results underline performance benefits with respect to existing data rate adaptation algorithms, with CogTRA exhibiting better performance especially in such dynamic networks. © 2013 The Brazilian Computer Society. 19 4 493 510 (2007) IEEE Standard For Information Technology- Telecommunications and Information Exchange Between Systems-local and Metropolitan Area Networks-specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, , 802.11-2007, Technical report. IEEE Computer Society, New York. doi:10.1109/IEEESTD.2007. 373646. Revision of IEEE Std. 802.11-1999 Ancillotti, E., Bruno, R., Conti, M., Experimentation and performance evaluation of rate adaptation algorithms in wireless mesh networks (2008) PE-WASUN: Proceedings of the ACM Symposium On Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous, Networks, pp. 7-14. , doi:10.1145/1454609.1454612 Biaz, S., Wu, S., Rate adaptation algorithms for IEEE 802.11 networks: A survey and comparison (2008) ISCC: Proceedings of the IEEE Symposium On Computers And, Communications, pp. 130-136. , doi:10.1109/ISCC.2008.4625680 Bicket, J.C., (2005) Bit-rate Selection In Wireless Networks, , http://pdos.csail.mit.edu/papers/jbicket-ms.pdf, Master's thesis. Institute of Technology (MIT), Department of Electrical Engineering and Computer Science, Massachusetts Boyd, J.R., (1995) The Essence of Wining and Losing, , http://pogoarchives.org/m/dni/john_boyd_compendium/essence_of_winning_losing.pdf Chaves, L., Malheiros, N., Madeira, E., Garcia, I., Kliazovich, D., A cognitive rate adaptation mechanism for wireless networks (2009) MACE: Proceedings of the IEEE International Workshop On Modelling Autonomic Communication Environments, pp. 58-71. , Springer, Berlin, doi:10.1007/978-3-642-05006-0_5 CogProt-the Cognitive Framework, , http://www.lrc.ic.unicamp.br/, cogprot CogTRA-cognitive Transmission Rate Adaptation For OpenWrt, , http://code.google.com/p/cogtra Chen, X., Gangwal, P., Qiao, D., Ram: Rate adaptation in mobile environments (2012) IEEE Trans Mobile Comput, 11 (3), pp. 464-477. , doi:10.1109/TMC.2011.91 Erez, U., Trott, M.D., Wornell, G.W., Rateless coding for Gaussian channels (2012) IEEE Trans Inf Theory, 58 (2), pp. 530-547. , doi:10. 1109/TIT.2011.2173242 Gudipati, A., Katti, S., Strider: Automatic rate adaptation and collision handling. ACM SIGCOMM (2011) Comput Commun Rev, 41 (4), pp. 158-169. , doi:10.1145/2043164.2018455 Haratcherev, I., Langendoen, K., Lagendijk, R., Sips, H., Hybrid rate control for IEEE 802.11 (2004) MobiWac: Proceedings of the International Workshop On Mobility Management and Wireless Access Protocols, pp. 10-18. , doi:10.1145/1023783.1023787 Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A., Performance anomaly of 802.11b (2003) INFOCOM: Proceedings of the International Conference On Computer Communications, 2, pp. 836-843 Holland, G., Vaidya, N., Bahl, P., A rate-adaptive MAC protocol for multi-hop wireless networks (2001) MobiCom: Proceedings of the International Conference On Mobile Computing and Networking, pp. 236-251. , doi:10.1145/381677.381700 Hou, J.C., Park, K.J., Kim, T.S., Kung, L.C., Medium access control and routing protocols for wireless mesh networks (2008) Wireless Mesh Networks: Architectures and Protocols, Chap, 4, pp. 77-111. , Hossain E, Leung K, Springer, Berlin http://iperf.sourceforge.net, IperfJain, R.K., Chiu, D.M.W., Hawe, W.R., (1984) A Quantitative Measure of Fairness and Discrimination For Resource Allocation In Shared Computer Systems, 301. , http://arxiv.org/abs/cs.NI/9809099, Technical report, Digital Equipment Corporation Joshi, T., Ahuja, D., Singh, D., Agrawal, D.P., SARA: Stochastic automata rate adaptation for IEEE 802.11 networks (2008) IEEE Trans Parallel Distrib Syst, 19 (11), pp. 1579-1590. , doi:10.1109/TPDS.2007. 70814 Judd, G., Wang, X., Steenkiste, P., Efficient channel-aware rate adaptation in dynamic environments (2008) MobSys: Proceedings of the International Conference On Mobile Systems, Applications, and Services, pp. 118-131. , doi:10.1145/1378600.1378615 Kamerman, A., Monteban, L., Wavelan-II: A high-performance wireless LAN for the unlicensed band (1997) Bell Labs Tech J, 2 (3), pp. 118-133. , doi:10.1002/bltj.2069 Kim, J., Kim, S., Choi, S., Qiao, D., CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs (2006) INFOCOM: Proceedings of the International Conference On Computer Communications, pp. 1-11. , doi:10.1109/INFOCOM.2006.316 Kim, T.S., Lim, H., Hou, J.C., Improving spatial reuse through tuning transmit power, carrier sense threshold, and data rate in multihop wireless networks (2006) MobiCom: Proceedings of the International Conference On Mobile Computing and Networking, pp. 366-377. , doi:10.1145/1161089.1161131 Kliazovich, D., Malheiros, N., Fonseca, N.L.S., Granelli, F., Madeira, E., CogProt: A framework for cognitive configuration and opti mization of communication protocols (2009) Mobilight: Proceedings of the International Conference On Mobile Lightweight Wireless Systems, pp. 280-291. , doi:10.1007/978-3-642-16644-0_25 Koci, N., Marina, M., Understanding the role of multi-rate retry mechanism for effective rate control in 802.11 wireless lans (2009) LCN: Proceedings of IEEE Conference On Local, Computer Networks, pp. 305-308. , doi:10.1109/LCN.2009.5355094 Lacage, M., Manshaei, M.H., Turletti, T., IEEE 802.11 rate adaptation: A practical approach (2004) MSWiM: Proceedings of the International Symposium On Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 126-134. , doi:10.1145/1023663. 1023687 Lakshmanan, S., Sanadhya, S., Sivakumar, R., On link rate adaptation in 802.11n WLANs (2011) INFOCOM: Proceedings of the International Conference On Computer Communications, pp. 366-370. , doi:10.1109/INFCOM.2011.5935183 Loiacono, M., Rosca, J., Trappe, W., The snowball effect: Detailing performance anomalies of 802.11 rate adaptation (2007) GLOBE-COM: Proceedings of the IEEE Global Telecommunications Conference, pp. 5117-5122. , doi:10.1109/GLOCOM.2007.970 Malheiros, N., Kliazovich, D., Granello, F., Madeira, E., Fonseca, N., A Cognitive Approach For Cross-layer Performance Management (2010) GLOBECOM: Proceedings of the IEEE Global Telecom Munications, pp. 1-5. , doi:10.1109/GLOCOM.2010. 5684313 OpenWrt Wireless Freedom, , http://openwrt.org ORBIT: Open-access Research Testbed For Next-generation Wireless Networks, , http://www.orbit-lab.org Perry, J., Balakrishnan, H., Shah, D., Rateless spinal codes (2011) HotNets-X: Proceedings of the ACM Workshop On Hot Topics In Networks, pp. 61-66. , doi:10.1145/2070562.2070568 Qiao, D., Choi, S., Shin, K., Goodput analysis and link adaptation for IEEE 802.11a wireless LANs (2002) IEEE Trans Mobile Comput, 1 (4), pp. 278-292. , doi:10.1109/TMC.2002.1175541 Ramachandran, K., Kremo, H., Gruteser, M., Spasojevic, P., Seskar, I., Scalability analysis of rate adaptation techniques in congested IEEE 802.11 networks: An ORBIT testbed comparative study (2007) WoWMoM: Proceedings of the IEEE International Symposium On a World of Wireless, Mobile and Multimedia, Networks, pp. 1-12. , doi:10.1109/WOWMOM.2007.4351717 Shankar, P., Nadeem, T., Rosca, J., Iftode, L., Cars: Context-aware rate selection for vehicular networks (2008) ICNP: Proceedings of the IEEE International Conference On Network Protocols, pp. 1-12. , doi:10.1109/ICNP.2008.4697019 Shannon, C.E., Communication in the presence of noise (1949) IRE Proceedings of the Institute of Radio Engineers, 37 (1), pp. 10-21 Smithies, D., (2005) Minstrel Rate Control Algorithm, , http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel Thomas, R.W., Friend, D.H., Dasilva, L.A., Mackenzie, A.B., Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives (2006) IEEE Commun Mag, 44 (12), pp. 51-57. , doi:10. 1109/MCOM.2006.273099 (2011) Federico II, , http://www.grid.unina.it/software/ITG/, Universita' degli Studi di Napoli, D-ITG, distributed internet traffic generator Xia, Q., Hamdi, M., Smart sender: A practical rate adaptation algorithm for multirate, IEEE 802.11 WLANs (2008) IEEE Trans Wirel Commun, 7 (5), pp. 1764-1775. , doi:10.1109/TWC.2008.061047 Yin, W., Bialkowski, K., Indulska, J., Hu, P., Evaluations of mad-wifi mac layer rate control mechanisms (2010) IWQoS: Proceedings of the International Workshop On Quality of Service, pp. 1-9. , doi:10. 1109/IWQoS.2010.5542745 Yin, W., Hu, P., Indulska, J., Bialkowski, K., Performance of mac80211 rate control mechanisms (2011) MSWiM: Proceedings of the International Conference On Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 427-436. , doi:10.1145/ 2068897.2068970