dc.creatorSouza D.P.
dc.creatorOka G.U.
dc.creatorAlvarez-Martinez C.E.
dc.creatorBisson-Filho A.W.
dc.creatorDunger G.
dc.creatorHobeika L.
dc.creatorCavalcante N.S.
dc.creatorAlegria M.C.
dc.creatorBarbosa L.R.S.
dc.creatorSalinas R.K.
dc.creatorGuzzo C.R.
dc.creatorFarah C.S.
dc.date2015
dc.date2015-06-25T12:53:59Z
dc.date2015-11-26T15:13:16Z
dc.date2015-06-25T12:53:59Z
dc.date2015-11-26T15:13:16Z
dc.date.accessioned2018-03-28T22:23:23Z
dc.date.available2018-03-28T22:23:23Z
dc.identifier
dc.identifierNature Communications. Nature Publishing Group, v. 6, n. , p. - , 2015.
dc.identifier20411723
dc.identifier10.1038/ncomms7453
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84924566019&partnerID=40&md5=c77e5554f63eb973f4553b5ec9bdbcc7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85535
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85535
dc.identifier2-s2.0-84924566019
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258598
dc.descriptionType IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.
dc.description6
dc.description
dc.description
dc.description
dc.descriptionBurkinshaw, B.J., Strynadka, N.C., Assembly and structure of the T3SS (2014) Biochim. Biophys. Acta, 1843, pp. 1649-1663
dc.descriptionAlvarez-Martinez, C.E., Christie, P.J., Biological diversity of prokaryotic type IV secretion systems (2009) Microbiol. Mol. Biol. Rev, 73, pp. 775-808
dc.descriptionSilverman, J.M., Brunet, Y.R., Cascales, E., Mougous, J.D., Structure and regulation of the type VI secretion system (2012) Annu. Rev. Microbiol, 66, pp. 453-472
dc.descriptionNivaskumar, M., Francetic, O., Type II secretion system: A magic beanstalk or a protein escalator (2014) Biochim. Biophys. Acta, 1843, pp. 1568-1577
dc.descriptionVan Ulsen, P., Rahman, S., Jong, W.S., Daleke-Schermerhorn, M.H., Luirink, J., Type v secretion: From biogenesis to biotechnology (2014) Biochim. Biophys. Acta, 1843, pp. 1592-1611
dc.descriptionHayes, C.S., Koskiniemi, S., Ruhe, Z.C., Poole, S.J., Low, D.A., Mechanisms and biological roles of contact-dependent growth inhibition systems (2014) Cold Spring Harb. Perspect Med, 4, p. a010025
dc.descriptionHood, R.D., A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria (2010) Cell. Host. Microbe, 7, pp. 25-37
dc.descriptionBackert, S., Meyer, T.F., Type IV secretion systems and their effectors in bacterial pathogenesis (2006) Curr. Opin. Microbiol, 9, pp. 207-217
dc.descriptionDehio, C., Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction (2008) Cell. Microbiol, 10, pp. 1591-1598
dc.descriptionLocht, C., Coutte, L., Mielcarek, N., The ins and outs of pertussis toxin (2011) FEBS J, 278, pp. 4668-4682
dc.descriptionDe Jong, M.F., Tsolis, R.M., Brucellosis and type IV secretion (2012) Future Microbiol, 7, pp. 47-58
dc.descriptionTegtmeyer, N., Wessler, S., Backert, S., Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis (2011) FEBS J, 278, pp. 1190-1202
dc.descriptionGe, J., Shao, F., Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors (2011) Cell. Microbiol, 13, pp. 1870-1880
dc.descriptionHofreuter, D., Odenbreit, S., Haas, R., Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system (2001) Mol. Microbiol, 41, pp. 379-391
dc.descriptionHamilton, H.L., Dominguez, N.M., Schwartz, K.J., Hackett, K.T., Dillard, J.P., Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system (2005) Mol. Microbiol, 55, pp. 1704-1721
dc.descriptionPitzschke, A., Hirt, H., New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation (2010) EMBO J, 29, pp. 1021-1032
dc.descriptionLow, H.H., Structure of a type IV secretion system (2014) Nature, 508, pp. 550-553
dc.descriptionWaksman, G., Orlova, E.V., Structural organisation of the type IV secretion systems (2014) Curr. Opin. Microbiol, 17, pp. 24-31
dc.descriptionTrokter, M., Felisberto-Rodrigues, C., Christie, P.J., Waksman, G., Recent advances in the structural and molecular biology of type IV secretion systems (2014) Curr. Opin. Struct. Biol, 27, pp. 16-23
dc.descriptionAlegria, M.C., Identification of new protein-protein interactions involving the products of the chromosome-and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. Citri (2005) J. Bacteriol, 187, pp. 2315-2325
dc.descriptionSouza, D.P., A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins (2011) PLoS Pathog, 7, p. e1002031
dc.descriptionFrederiksen, R.F., Bacterial chitinases and chitin-binding proteins as virulence factors (2013) Microbiology, 159, pp. 833-847
dc.descriptionRussell, A.B., Type VI secretion delivers bacteriolytic effectors to target cells (2011) Nature, 475, pp. 343-347
dc.descriptionRussell, A.B., Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors (2013) Nature, 496, pp. 508-512
dc.descriptionVan Herreweghe, J.M., Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme (2010) Cell. Mol. Life Sci, 67, pp. 1177-1188
dc.descriptionLeysen, S., Molecular basis of bacterial defense against host lysozymes: X-ray structures of periplasmic lysozyme inhibitors PliI and PliC (2011) J. Mol. Biol, 405, pp. 1233-1245
dc.descriptionDing, J., Wang, W., Feng, H., Zhang, Y., Wang, D.C., Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms (2012) J. Biol. Chem, 287, pp. 26911-26920
dc.descriptionFronzes, R., Structure of a type IV secretion system core complex (2009) Science, 323, pp. 266-268
dc.descriptionBasler, M., Ho, B.T., Mekalanos, J.J., Tit-for-tat: Type VI secretion system counterattack during bacterial cell-cell interactions (2013) Cell, 152, pp. 884-894
dc.descriptionLeroux, M., Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword (2012) Proc. Natl Acad. Sci. USA, 109, pp. 19804-19809
dc.descriptionMacintyre, D.L., Miyata, S.T., Kitaoka, M., Pukatzki, S., The Vibrio cholerae type VI secretion system displays antimicrobial properties (2010) Proc. Natl Acad. Sci. USA, 107, pp. 19520-19524
dc.descriptionMurdoch, S.L., The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors (2011) J. Bacteriol, 193, pp. 6057-6069
dc.descriptionSchwarz, S., Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions (2010) PLoS Pathog, 6, p. e1001068
dc.descriptionCasas-Godoy, L., Duquesne, S., Bordes, F., Sandoval, G., Marty, A., Lipases: An overview (2012) Methods Mol. Biol, 861, pp. 3-30
dc.descriptionLovering, A.L., Safadi, S.S., Strynadka, N.C., Structural perspective of peptidoglycan biosynthesis and assembly (2012) Annu. Rev. Biochem, 81, pp. 451-478
dc.descriptionLi, G., Miller, A., Bull, H., Howard, S.P., Assembly of the type II secretion system: Identification of ExeA residues critical for peptidoglycan binding and secretin multimerization (2011) J. Bacteriol, 193, pp. 197-204
dc.descriptionScheurwater, E., Reid, C.W., Clarke, A.J., Lytic transglycosylases: Bacterial space-making autolysins (2008) Int. J. Biochem. Cell Biol, 40, pp. 586-591
dc.descriptionFirczuk, M., Bochtler, M., Folds and activities of peptidoglycan amidases (2007) FEMS Microbiol. Rev, 31, pp. 676-691
dc.descriptionWohlkonig, A., Huet, J., Looze, Y., Wintjens, R., Structural relationships in the lysozyme superfamily: Significant evidence for glycoside hydrolase signature motifs (2010) PLoS One, 5, p. e15388
dc.descriptionAnantharaman, V., Aravind, L., Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes (2003) Genome. Biol, 4, p. R11
dc.descriptionMutschler, H., Gebhardt, M., Shoeman, R.L., Meinhart, A., A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis (2011) PLoS Biol, 9, p. e1001033
dc.descriptionZhang, D., Iyer, L.M., Aravind, L., A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems (2011) Nucleic Acids Res, 39, pp. 4532-4552
dc.descriptionZhang, D., De Souza, R.F., Anantharaman, V., Iyer, L.M., Aravind, L., Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics (2012) Biol. Direct, 7, p. 18
dc.descriptionSalomon, D., Marker for type VI secretion system effectors (2014) Proc. Natl Acad. Sci. USA, 111, pp. 9271-9276
dc.descriptionHo, B.T., Basler, M., Mekalanos, J.J., Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer (2013) Science, 342, pp. 250-253
dc.descriptionGuimaraes, B.G., The MX2 macromolecular crystallography beamline: A wiggler X-ray source at the LNLS (2009) J. Synchrotron Radiat, 16, pp. 69-75
dc.descriptionPflugrath, J.W., The finer things in X-ray diffraction data collection (1999) Acta. Crystallogr. D Biol. Crystallogr, 55, pp. 1718-1725
dc.descriptionOtwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326
dc.descriptionSheldrick, G.M., A short history of SHELX (2008) Acta. Crystallogr, 64, pp. 112-122
dc.descriptionVonrhein, C., Blanc, E., Roversi, P., Bricogne, G., Automated structure solution with autoSHARP (2007) Methods Mol. Biol, 364, pp. 215-230
dc.descriptionLanger, G., Cohen, S.X., Lamzin, V.S., Perrakis, A., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 (2008) Nat. Protoc, 3, pp. 1171-1179
dc.descriptionEmsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta. Crystallogr. D Biol. Crystallogr, 66, pp. 486-501
dc.descriptionPainter, J., Merritt, E.A., Optimal description of a protein structure in terms of multiple groups undergoing TLS motion (2006) Acta. Crystallogr. D Biol. Crystallogr, 62, pp. 439-450
dc.descriptionMurshudov, G.N., REFMAC5 for the refinement of macromolecular crystal structures (2011) Acta. Crystallogr. D Biol. Crystallogr, 67, pp. 355-367
dc.descriptionThe Ccp4 suite-Programs for protein crystallography (1994) Acta. Crystallogr. D Biol. Crystallogr, 50, pp. 760-763. , Collaborative Computational Project Number 4
dc.descriptionDavis, I.W., MolProbity: All-atom contacts and structure validation for proteins and nucleic acids (2007) Nucleic Acids Res, 35, pp. W375-W383
dc.descriptionLovell, S.C., Structure validation by Calpha geometry: Phi,psi and Cbeta deviation (2003) Proteins, 50, pp. 437-450
dc.descriptionLaskowski, R.A., Macarthur, M.W., Moss, D.S., Thornton, J.M., Procheck-A program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr, 26, pp. 283-291
dc.descriptionBond C. ., S., TopDraw: A sketchpad for protein structure topology cartoons (2003) Bioinformatics, 19, pp. 311-312
dc.descriptionHolm, L., Rosenstrom, P., Dali server: Conservation mapping in 3D (2010) Nucleic Acids Res, 38, pp. W545-W549
dc.descriptionBarbosa, L.R., The importance of protein-protein interactions on the pHinduced conformational changes of bovine serum albumin: A small-angle X-ray scattering study (2010) Biophys. J, 98, pp. 147-157
dc.descriptionJacques, D.A., Trewhella, J., Small-angle scattering for structural biology-expanding the frontier while avoiding the pitfalls (2010) Protein Sci, 19, pp. 642-657
dc.descriptionPetoukhov, M.V., New developments in the ATSAS program package for small-angle scattering data analysis (2012) J. Appl. Crystallogr, 45, pp. 342-350
dc.descriptionSvergun, D.I., Determination of the regularization parameter in indirecttransform methods using perceptual criteria (1992) J. Appl. Crystallogr, 25, pp. 495-503
dc.descriptionSvergun, D.I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing (1999) Biophys. J, 76, pp. 2879-2886
dc.descriptionVolkov, V.V., Svergun, D.I., Uniqueness of ab initio shape determination in small-angle scattering (2003) J. Appl. Crystallogr, 36, pp. 860-864
dc.descriptionSvergun, D., Barberato, C., Koch, M.H.J., CRYSOL-A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates (1995) J. Appl. Crystallogr, 28, pp. 768-773
dc.descriptionBabu, M.M., A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins (2006) J. Bacteriol, 188, pp. 2761-2773
dc.descriptionDa Silva, A.C., Comparison of the genomes of two Xanthomonas pathogens with differing host specificities (2002) Nature, 417, pp. 459-463
dc.descriptionMarchler-Bauer, A., Cdd: A conserved domain database for the functional annotation of proteins (2011) Nucleic Acids Res, 39, pp. D225-D229
dc.languageen
dc.publisherNature Publishing Group
dc.relationNature Communications
dc.rightsaberto
dc.sourceScopus
dc.titleBacterial Killing Via A Type Iv Secretion System
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución