dc.creator | Yang H.M. | |
dc.date | 1998 | |
dc.date | 2015-06-30T15:05:11Z | |
dc.date | 2015-11-26T15:13:12Z | |
dc.date | 2015-06-30T15:05:11Z | |
dc.date | 2015-11-26T15:13:12Z | |
dc.date.accessioned | 2018-03-28T22:23:19Z | |
dc.date.available | 2018-03-28T22:23:19Z | |
dc.identifier | | |
dc.identifier | Journal Of Biological Systems. , v. 6, n. 2, p. 187 - 212, 1998. | |
dc.identifier | 2183390 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-0000975961&partnerID=40&md5=40cbd290f0059799f475f12726df50b9 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/100538 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/100538 | |
dc.identifier | 2-s2.0-0000975961 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1258581 | |
dc.description | When a SIR model with a constant contact rate is used to describe the dynamics of directly transmitted infections, oscillations, which decay exponentially as time goes on, are obtained. By using this kind of model, we obtained the natural- and inter-epidemics periods of the disease. These two quantities are quasi-periods, since we are considering damped oscillations. The above two periods were estimated from rubella seroprevalence data from a small Brazilian community and, based on them, a vaccination strategy in a series of pulses was designed. The vaccination time lag between pulses is related to the natural-epidemics period, instead of the inter-epidemics period, multiplied by a fraction usually less than unity (the security factor). The results for different controlling scenarios showed that a series of pulses vaccination strategy can be a good option for developing countries. | |
dc.description | 6 | |
dc.description | 2 | |
dc.description | 187 | |
dc.description | 212 | |
dc.description | Agur, Z., Cojocaru, L., Mazor, G., Anderson, R.M., Danon, Y.L., Pulse mass measles vaccination across age cohorts (1993) Proc. Nat. Acad. Sci. USA, 90, pp. 11698-11702 | |
dc.description | Anderson, R.M., May, R.M., (1990) Infectious Diseases of Humans: Dynamics and Control, , Oxford Univ. Press, New York | |
dc.description | Anderson, R.M., May, R.M., Vaccination against rubella and measles: Quantitative investigations of different policies (1983) J. Hyg. Camb., 90, pp. 259-325 | |
dc.description | Arfken, G., (1970) Mathematical Methods for Physicists, , Academic Press, New York | |
dc.description | Arita, I., Wickett, J., Fenner, F., Impact of population density on immunization programmes (1986) J. Hygiene, 96, pp. 459-466 | |
dc.description | Arrowsmith, D.K., Place, C.M., (1986) Ordinary Differential Equations: A Qualitative Approach with Applications, , Chapman and Hall, London | |
dc.description | Azevedo Neto, R.S., Silveira, A.S.B., Nokes, D.J., Yang, H.M., Passos, S.D., Cardoso, M.R.D., Massad, E., Rubella seroepidemiology in a non-immunized population of São Paulo State, Brazil (1994) Epidemiol. Infect., 113, pp. 161-173 | |
dc.description | Bailey, N.T.J., The Mathematical Theory of Infectious Diseases and Its Applications, 2nd Ed., , Griffin, London | |
dc.description | Bailey, N.T.J., Duppenthaler, J., Sensitivity analysis in the modelling of infectious disease dynamics (1980) J. Math. Biol., 10, pp. 113-131 | |
dc.description | Capasso, V., Mathematical Models in Medicine (1991) Lect. Notes Biomath., 11. , ed. by Berger J. et al. Springer, Berlin | |
dc.description | Dietz, K., Transmission and control of arbovirus diseases (1975) Proc. SIMS Conf. Epidemiol., pp. 104-121. , Alta, Utah, USA | |
dc.description | Dietz, K., The incidence of diseases under the influence of seasonal fluctuations (1976) Lect. Notes Biomath., 11, pp. 1-15. , Mathematical Models in Medicine, ed. by Berger J. et al. Springer, Berlin | |
dc.description | Evans, A.S., (1989) Viral Infections of Humans: Epidemiology and Control, 3rd Ed., , Plenum Medical Book Co., New York | |
dc.description | Feigin, R.D., Cherry, J.D., (1987) Textbook of Pediatric Infectious Diseases, 2nd Ed., 2. , W. B. Saunders Co., Philadelphia | |
dc.description | Frank, P.M., (1978) Introduction to System Sensitivity Theory, , Academic Press, New York | |
dc.description | Hethcote, H.W., Optimal ages of vaccination for measles (1988) Math. Biosc., 89, pp. 29-52 | |
dc.description | Kuznetsov, Yu.A., Piccardi, C., Bifurcation analysis of periodic SEIR and SIR epidemic models (1994) J. Math. Biol., 32, pp. 109-121 | |
dc.description | Liu, W.M., Hethcote, H.W., Levin, S.A., Dynamic behaviour of epidemiological models with nonlinear incidence rates (1987) J. Math. Biol., 25, pp. 359-380 | |
dc.description | Massad, E., Burattini, M.N., Azevedo Neto, R.S., Yang, H.M., Coutinho, F.A.B., Zanetta, D.M.T., A model-based design of a vaccination strategy against rubella in a non-immunized community of São Paulo State, Brazil (1994) Epidemiol. Infect., 112, pp. 579-594 | |
dc.description | Massad, E., Lundberg, S., Yang, H.M., Modeling and simulating the evolution of resistance against antibiotics (1993) Int. J. Biomed. Comput., 33, pp. 65-81 | |
dc.description | Massad, E., Azevedo Neto, R.S., Burattini, M.N., Zanetta, D.M.T., Coutinho, F.A.B., Yang, H.M., Moraes, J.C., Passos, S.D., Assessing the efficacy of a vaccination strategy against rubella in São Paulo State, Brazil (1995) Int. J. Epidemiol., 24, pp. 842-850 | |
dc.description | Muench, H., (1959) Catalytic Models in Epidemiology, , Harvard University Press, Cambridge | |
dc.description | Murray, J.D., Mathematical biology (1989) Biomathematics Texts, 19. , Springer-Verlag, Berlin | |
dc.description | Pannuti, C.S., Moraes, J.C., Sousa, V.A.U.F., Camargo, M.C.C., Hidalgo, N.T.R., Measles antibody prevalence after mass immunization in São Paulo, Brazil (1991) Bull. WHO, 69, pp. 557-560 | |
dc.description | Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., (1989) Numerical Recipes: The Art of Scientific Computing (FORTRAN Version), , Cambridge Univ. Press, Cambridge | |
dc.description | Hand, D.A., Wilson, H.B., Chaotic stochasticity: A ubiquitous source of unpredictability in epidemics (1991) Proc. R. Soc. Lond. B, pp. 179-184 | |
dc.description | Schwartz, I.B., Small amplitude, long period outbreaks in seasonally driven epidemics (1992) J. Math. Biol., 30, pp. 473-491 | |
dc.description | Potential use of new poliomyelitis vaccines: Memorandum from a WHO meeting (1990) Bull. WHO, 68, pp. 545-548 | |
dc.description | Yang, H.M., Yamamoto, J.F., Azevedo Neto, R.S., Silveira, A.S.B., Massad, E., The use of quasi-periodic phenomenon in epidemics to design a pulse vaccination campaign (1996) Math. Mod. Scient. Comp., 6, pp. 799-804 | |
dc.description | Yang, H.M., Silveira, A.S.B., The loss of immunity in directly transmitted infections modelling: Effects on the epidemiological parameters (1998) B. Math. Biol., 60, pp. 355-372 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Biological Systems | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Modelling Vaccination Strategy Against Directly Transmitted Diseases Using A Series Of Pulses | |
dc.type | Artículos de revistas | |