dc.creatorYang H.M.
dc.date1998
dc.date2015-06-30T15:05:11Z
dc.date2015-11-26T15:13:12Z
dc.date2015-06-30T15:05:11Z
dc.date2015-11-26T15:13:12Z
dc.date.accessioned2018-03-28T22:23:19Z
dc.date.available2018-03-28T22:23:19Z
dc.identifier
dc.identifierJournal Of Biological Systems. , v. 6, n. 2, p. 187 - 212, 1998.
dc.identifier2183390
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0000975961&partnerID=40&md5=40cbd290f0059799f475f12726df50b9
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/100538
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/100538
dc.identifier2-s2.0-0000975961
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258581
dc.descriptionWhen a SIR model with a constant contact rate is used to describe the dynamics of directly transmitted infections, oscillations, which decay exponentially as time goes on, are obtained. By using this kind of model, we obtained the natural- and inter-epidemics periods of the disease. These two quantities are quasi-periods, since we are considering damped oscillations. The above two periods were estimated from rubella seroprevalence data from a small Brazilian community and, based on them, a vaccination strategy in a series of pulses was designed. The vaccination time lag between pulses is related to the natural-epidemics period, instead of the inter-epidemics period, multiplied by a fraction usually less than unity (the security factor). The results for different controlling scenarios showed that a series of pulses vaccination strategy can be a good option for developing countries.
dc.description6
dc.description2
dc.description187
dc.description212
dc.descriptionAgur, Z., Cojocaru, L., Mazor, G., Anderson, R.M., Danon, Y.L., Pulse mass measles vaccination across age cohorts (1993) Proc. Nat. Acad. Sci. USA, 90, pp. 11698-11702
dc.descriptionAnderson, R.M., May, R.M., (1990) Infectious Diseases of Humans: Dynamics and Control, , Oxford Univ. Press, New York
dc.descriptionAnderson, R.M., May, R.M., Vaccination against rubella and measles: Quantitative investigations of different policies (1983) J. Hyg. Camb., 90, pp. 259-325
dc.descriptionArfken, G., (1970) Mathematical Methods for Physicists, , Academic Press, New York
dc.descriptionArita, I., Wickett, J., Fenner, F., Impact of population density on immunization programmes (1986) J. Hygiene, 96, pp. 459-466
dc.descriptionArrowsmith, D.K., Place, C.M., (1986) Ordinary Differential Equations: A Qualitative Approach with Applications, , Chapman and Hall, London
dc.descriptionAzevedo Neto, R.S., Silveira, A.S.B., Nokes, D.J., Yang, H.M., Passos, S.D., Cardoso, M.R.D., Massad, E., Rubella seroepidemiology in a non-immunized population of São Paulo State, Brazil (1994) Epidemiol. Infect., 113, pp. 161-173
dc.descriptionBailey, N.T.J., The Mathematical Theory of Infectious Diseases and Its Applications, 2nd Ed., , Griffin, London
dc.descriptionBailey, N.T.J., Duppenthaler, J., Sensitivity analysis in the modelling of infectious disease dynamics (1980) J. Math. Biol., 10, pp. 113-131
dc.descriptionCapasso, V., Mathematical Models in Medicine (1991) Lect. Notes Biomath., 11. , ed. by Berger J. et al. Springer, Berlin
dc.descriptionDietz, K., Transmission and control of arbovirus diseases (1975) Proc. SIMS Conf. Epidemiol., pp. 104-121. , Alta, Utah, USA
dc.descriptionDietz, K., The incidence of diseases under the influence of seasonal fluctuations (1976) Lect. Notes Biomath., 11, pp. 1-15. , Mathematical Models in Medicine, ed. by Berger J. et al. Springer, Berlin
dc.descriptionEvans, A.S., (1989) Viral Infections of Humans: Epidemiology and Control, 3rd Ed., , Plenum Medical Book Co., New York
dc.descriptionFeigin, R.D., Cherry, J.D., (1987) Textbook of Pediatric Infectious Diseases, 2nd Ed., 2. , W. B. Saunders Co., Philadelphia
dc.descriptionFrank, P.M., (1978) Introduction to System Sensitivity Theory, , Academic Press, New York
dc.descriptionHethcote, H.W., Optimal ages of vaccination for measles (1988) Math. Biosc., 89, pp. 29-52
dc.descriptionKuznetsov, Yu.A., Piccardi, C., Bifurcation analysis of periodic SEIR and SIR epidemic models (1994) J. Math. Biol., 32, pp. 109-121
dc.descriptionLiu, W.M., Hethcote, H.W., Levin, S.A., Dynamic behaviour of epidemiological models with nonlinear incidence rates (1987) J. Math. Biol., 25, pp. 359-380
dc.descriptionMassad, E., Burattini, M.N., Azevedo Neto, R.S., Yang, H.M., Coutinho, F.A.B., Zanetta, D.M.T., A model-based design of a vaccination strategy against rubella in a non-immunized community of São Paulo State, Brazil (1994) Epidemiol. Infect., 112, pp. 579-594
dc.descriptionMassad, E., Lundberg, S., Yang, H.M., Modeling and simulating the evolution of resistance against antibiotics (1993) Int. J. Biomed. Comput., 33, pp. 65-81
dc.descriptionMassad, E., Azevedo Neto, R.S., Burattini, M.N., Zanetta, D.M.T., Coutinho, F.A.B., Yang, H.M., Moraes, J.C., Passos, S.D., Assessing the efficacy of a vaccination strategy against rubella in São Paulo State, Brazil (1995) Int. J. Epidemiol., 24, pp. 842-850
dc.descriptionMuench, H., (1959) Catalytic Models in Epidemiology, , Harvard University Press, Cambridge
dc.descriptionMurray, J.D., Mathematical biology (1989) Biomathematics Texts, 19. , Springer-Verlag, Berlin
dc.descriptionPannuti, C.S., Moraes, J.C., Sousa, V.A.U.F., Camargo, M.C.C., Hidalgo, N.T.R., Measles antibody prevalence after mass immunization in São Paulo, Brazil (1991) Bull. WHO, 69, pp. 557-560
dc.descriptionPress, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., (1989) Numerical Recipes: The Art of Scientific Computing (FORTRAN Version), , Cambridge Univ. Press, Cambridge
dc.descriptionHand, D.A., Wilson, H.B., Chaotic stochasticity: A ubiquitous source of unpredictability in epidemics (1991) Proc. R. Soc. Lond. B, pp. 179-184
dc.descriptionSchwartz, I.B., Small amplitude, long period outbreaks in seasonally driven epidemics (1992) J. Math. Biol., 30, pp. 473-491
dc.descriptionPotential use of new poliomyelitis vaccines: Memorandum from a WHO meeting (1990) Bull. WHO, 68, pp. 545-548
dc.descriptionYang, H.M., Yamamoto, J.F., Azevedo Neto, R.S., Silveira, A.S.B., Massad, E., The use of quasi-periodic phenomenon in epidemics to design a pulse vaccination campaign (1996) Math. Mod. Scient. Comp., 6, pp. 799-804
dc.descriptionYang, H.M., Silveira, A.S.B., The loss of immunity in directly transmitted infections modelling: Effects on the epidemiological parameters (1998) B. Math. Biol., 60, pp. 355-372
dc.languageen
dc.publisher
dc.relationJournal of Biological Systems
dc.rightsfechado
dc.sourceScopus
dc.titleModelling Vaccination Strategy Against Directly Transmitted Diseases Using A Series Of Pulses
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución