dc.creatorFrungillo L.
dc.creatorDe Oliveira J.F.P.
dc.creatorSaviani E.E.
dc.creatorOliveira H.C.
dc.creatorMartinez M.C.
dc.creatorSalgado I.
dc.date2013
dc.date2015-06-25T19:15:24Z
dc.date2015-11-26T15:13:05Z
dc.date2015-06-25T19:15:24Z
dc.date2015-11-26T15:13:05Z
dc.date.accessioned2018-03-28T22:23:10Z
dc.date.available2018-03-28T22:23:10Z
dc.identifier
dc.identifierBiochimica Et Biophysica Acta - Bioenergetics. , v. 1827, n. 3, p. 239 - 247, 2013.
dc.identifier52728
dc.identifier10.1016/j.bbabio.2012.11.011
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84871987593&partnerID=40&md5=0eda499765c96ae57fec35a2a1860d93
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89245
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89245
dc.identifier2-s2.0-84871987593
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258547
dc.descriptionThe enzyme S-nitrosoglutathione reductase (GSNOR) has an important role in the metabolism of S-nitrosothiols (SNO) and, consequently, in the modulation of nitric oxide (NO)-mediated processes. Although the mitochondrial electron transport chain is an important target of NO, the role of GSNOR in the functionality of plant mitochondria has not been addressed. Here, we measured SNO content and NO emission in Arabidopsis thaliana cell suspension cultures of wild-type (WT) and GSNOR overexpressing (GSNOROE) or antisense (GSNORAS) transgenic lines, grown under optimal conditions and under nutritional stress. Respiratory activity of isolated mitochondria and expression of genes encoding for mitochondrial proteins were also analyzed. Under optimal growth conditions, GSNOROE had the lowest SNO and NO levels and GSNORAS the highest, as expected by the GSNO-consuming activity of GSNOR. Under stress, this pattern was reversed. Analysis of oxygen uptake by isolated mitochondria showed that complex I and external NADH dehydrogenase activities were inhibited in GSNOROE cells grown under nutritional stress. Moreover, GSNOROE could not increase alternative oxidase (AOX) activity under nutritional stress. GSNORAS showed constitutively high activity of external NADH dehydrogenase, and maintained the activity of the uncoupling protein (UCP) under stress. The alterations observed in mitochondrial protein activities were not strictly correlated to changes in gene expression, but instead seemed to be related with the SNO/NO content, suggesting a post-transcriptional regulation. Overall, our results highlight the importance of GSNOR in modulating SNO and NO homeostasis as well mitochondrial functionality, both under normal and adverse conditions in A. thaliana cells. © 2012 Elsevier B.V.
dc.description1827
dc.description3
dc.description239
dc.description247
dc.descriptionNeill, S., Bright, J., Desikan, R., Hancock, J., Harrison, J., Wilson, I., Nitric oxide evolution and perception (2008) J. Exp. Bot., 59, pp. 25-35
dc.descriptionLeiper, J., Nandi, M., The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis (2011) Nat. Rev. Drug Discov., 10, pp. 277-291
dc.descriptionBeligni, M.V., Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants (2000) Planta, 210, pp. 215-221
dc.descriptionSeligman, K., Saviani, E.E., Oliveira, H.C., Pinto-Maglio, C.A.F., Salgado, I., Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants (2008) Plant Cell Physiol., 49, pp. 1112-1121
dc.descriptionModolo, L.V., Augusto, O., Almeida, I.M.G., Magalhaes, J.R., Salgado, I., Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae (2005) FEBS Lett., 579, pp. 3814-3820
dc.descriptionSiddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., Role of nitric oxide in tolerance of plants to abiotic stress (2011) Protoplasma, 248, pp. 447-455
dc.descriptionLindermayr, C., Sell, S., Müller, B., Leister, D., Durner, J., Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide (2010) Plant Cell, 22, pp. 2894-2907
dc.descriptionZaninotto, F., La Camera, S., Polverari, A., Delledonne, M., Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response (2006) Plant Physiol., 141, pp. 379-383
dc.descriptionBesson-Bard, A., Pugin, A., Wendehenne, D., New insights into nitric oxide signaling in plants (2008) Annu. Rev. Plant Biol., 59, pp. 21-39
dc.descriptionLindermayr, C., Saalbach, G., Durner, J., Proteomic identification of S-nitrosylated proteins in Arabidopsis (2005) Plant Physiol., 137, pp. 921-930
dc.descriptionChouchani, E.T., Hurd, T.R., Nadtochiy, S.M., Brookes, P.S., Fearnley, I.M., Lilley, K.S., Lilley, K.S., Murphy, M.P., Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): Implications for the regulation of mitochondrial function by reversible S-nitrosation (2010) Biochem. J., 430, pp. 49-59
dc.descriptionCleeter, M.W., Cooper, J.M., Darley-Usmar, V.M., Moncada, S., Schapira, A.H., Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases (1994) FEBS Lett., 345, pp. 50-54
dc.descriptionMillar, A.H., Day, D.A., Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria (1996) FEBS Lett., 398, pp. 155-158
dc.descriptionGupta, K.J., Igamberdiev, A.U., Manjunatha, G., Segu, S., Moran, J.F., Neelawarne, B., Bauwe, H., Kaiser, W.M., The emerging roles of nitric oxide (NO) in plant mitochondria (2011) Plant Sci., 181, pp. 520-526
dc.descriptionBorutaité, V., Brown, G.C., Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide (1996) Biochem. J., 315, pp. 295-299
dc.descriptionMartí, M.C., Florez-Sarasa, I., Camejo, D., Pallol, B., Ortiz, A., Ribas-Carbó, M., Lazaro, J.J., Jimenez, A., Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves (2012) Physiol. Plant., 62, pp. 3863-3874
dc.descriptionBorutaite, V., Brown, G.C., S-nitrosothiol inhibition of mitochondrial complex i causes a reversible increase in mitochondrial hydrogen peroxide production (2006) Biochim. Biophys. Acta, 1757, pp. 562-566
dc.descriptionClementi, E., Brown, G.C., Feelisch, M., Moncada, S., Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex i and protective action of glutathione (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 7631-7636
dc.descriptionVanlerberghe, G.C., McIntosh, L., Alternative oxidase: From gene to function (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, pp. 703-734
dc.descriptionBlokhina, O., Fagerstedt, K.V., Reactive oxygen species and nitric oxide in plant mitochondria: Origin and redundant regulatory systems (2010) Physiol. Plant., 138, pp. 447-462
dc.descriptionHachiya, T., Noguchi, K., Integrative response of plant mitochondrial electron transport chain to nitrogen source (2011) Plant Cell Rep., 30, pp. 195-204
dc.descriptionZhu, Y., Lu, J., Wang, J., Chen, F., Leng, F., Li, H., Regulation of thermogenesis in plants: The interaction of alternative oxidase and plant uncoupling mitochondrial protein (2011) J. Integr. Plant Biol., 53, pp. 7-13
dc.descriptionSmith, C., Barthet, M., Melino, V., Smith, P., Day, D., Soole, K., Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress (2011) Plant Cell Physiol., 52, pp. 1222-1237
dc.descriptionHuang, X., Von Rad, U., Durner, J., Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells (2002) Planta, 215, pp. 914-923
dc.descriptionWulff, A., Oliveira, H.C., Saviani, E.E., Salgado, I., Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: Influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels (2009) Nitric Oxide, 21, pp. 132-139
dc.descriptionCvetkovska, M., Vanlerberghe, G.C., Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide (2012) New Phytol., 195, pp. 32-39
dc.descriptionVanlerberghe, G.C., Cvetkovska, M., Wang, J., Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? (2009) Physiol. Plant., 137, pp. 392-406
dc.descriptionDe Oliveira, H.C., Wulff, A., Saviani, E.E., Salgado, I., Nitric oxide degradation by potato tuber mitochondria: Evidence for the involvement of external NAD(P)H dehydrogenases (2008) Biochim. Biophys. Acta, 1777, pp. 470-476
dc.descriptionVercesi, A.E., Martins, L.S., Silva, M.A.P., Leite, H.M.F., Cuccovia, I.M., Chaimovich, H., PUMPing plants (1995) Nature, 375, p. 24
dc.descriptionBrandalise, M., Maia, I.G., Borecký, J., Vercesi, A.E., Arruda, P., Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress (2003) J. Bioenerg. Biomembr., 35, pp. 203-209
dc.descriptionVan Aken, O., Zhang, B., Carrie, C., Uggalla, V., Paynter, E., Giraud, E., Whelan, J., Defining the mitochondrial stress response in Arabidopsis thaliana (2009) Mol. Plant, 2, pp. 1310-1324
dc.descriptionJi, Y., Akerboom, T.P., Sies, H., Thomas, J.A., S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitrosoglutathione (1999) Arch. Biochem. Biophys., 362, pp. 67-78
dc.descriptionLiu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., Stamler, J.S., A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans (2001) Nature, 410, pp. 490-494
dc.descriptionJensen, D.E., Belka, G.K., Du Bois, G.C., S-nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme (1998) Biochem. J., 331, pp. 659-668
dc.descriptionAchkor, H., Díaz, M., Ferna, M.R., Biosca, J.A., Pares, X., Martínez, M.C., Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis (2003) Plant Physiol., 132, pp. 2248-2255
dc.descriptionRustérucci, C., Espunya, M.C., Díaz, M., Chabannes, M., Martínez, M.C., S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically (2007) Plant Physiol., 143, pp. 1282-1292
dc.descriptionYun, B.W., Feechan, A., Yin, M.H., Saidi, N.B.B., Le Bihan, T., Yu, M., Moore, J.W., Loake, G.J., S-nitrosylation of NADPH oxidase regulates cell death in plant immunity (2011) Nature, 478, pp. 264-268
dc.descriptionLee, U., Wie, C., Fernandez, B.O., Feelisch, M., Vierling, E., Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis (2008) Plant Cell, 20, pp. 786-802
dc.descriptionChen, R., Sun, S., Wang, C., Li, Y., Liang, Y., An, F., Li, C., Zuo, J., The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death (2009) Cell Res., 19, pp. 1377-1387
dc.descriptionPiantadosi, C.A., Regulation of mitochondrial processes by protein S-nitrosylation (2012) Biochim. Biophys. Acta, 1820, pp. 712-721
dc.descriptionMurashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol. Plant., 15, pp. 473-479
dc.descriptionSakamoto, A., Ueda, M., Morikawa, H., Arabidopsis glutathione-dependent formaldehyde desydrogenase is an S-nitrosoglutathione reductase (2002) FEBS Lett., 515, pp. 20-24
dc.descriptionBradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
dc.descriptionSaville, B., A scheme for the colorimetric determination of microgram amounts of thiols (1958) Analyst, 83, pp. 670-672
dc.descriptionZhang, X., Kim, W.S., Hatcher, N., Potgieter, K., Moroz, L.L., Gillette, R., Sweedler, J.V., Interfering with nitric oxide measurements. 4,5-diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid (2002) J. Biol. Chem., 277, pp. 48472-48478
dc.descriptionYe, X., Kim, W.-S., Rubakhin, S.S., Sweedler, J.V., Measurement of nitric oxide by 4,5-diaminofluorescein without interferences (2004) Analyst, 129, pp. 1200-1205
dc.descriptionPetrussa, E., Bertolini, A., Krajnáková, J., Casolo, V., MacRì, F., Vianello, A., Isolation of mitochondria from embryogenic cultures of Picea abies (L.) Karst. and Abies cephalonica Loud.: Characterization of a K+(ATP) channel (2008) Plant Cell Rep., 27, pp. 137-146
dc.descriptionLindén, A.C., Moller, I.M., Purification, characterization and storage of mitochondria from Jerusalem artichoke tubers (1988) Physiol. Plant., 72, pp. 265-270
dc.descriptionMatiolli, C.C., Tomaz, J.P., Duarte, G.T., Prado, F.M., Del Bem, L.E.V., Silveira, A.B., Gauer, L., Vincentz, M., The Arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose signals (2011) Plant Physiol., 167, pp. 692-705
dc.descriptionStepan-Sarkissian, G., Grey, D., Growth determination and medium analysis (1990) Methods Mol. Biol., 6, pp. 13-27
dc.descriptionSaviani, E.E., Martins, I.S., Fatty acid-mediated uncoupling of potato tuber mitochondria (1998) IUBMB Life, 44, pp. 833-839
dc.descriptionYoshida, K., Noguchi, K., Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves (2009) Plant Cell Physiol., 50, pp. 1449-1462
dc.descriptionFeechan, A., Kwon, E., Yun, B.-W., Wang, Y., Pallas, J.A., Loake, G.J., A central role for S-nitrosothiols in plant disease resistance (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 8054-8059
dc.descriptionAiraki, M., Sánchez-Moreno, L., Leterrier, M., Barroso, J.B., Palma, J.M., Corpas, F.J., Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS (2011) Plant Cell Physiol., 52, pp. 2006-2015
dc.descriptionLeterrier, M., Chaki, M., Airaki, M., Valderrama, R., Palma, J.M., Barroso, J.B., Corpas, F.J., Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress (2011) Plant Signal. Behav., 6, pp. 789-793
dc.descriptionEspunya, M.C., Diaz, M., Moreno-Romero, J., Martinez, M.C., Modification of intracellular levels of glutathione-dependent formaldehyde dehydrogenase alters glutathione homeostasis and root development (2006) Plant Cell Environ., 29, pp. 1002-1011
dc.descriptionBai, X., Yang, L., Tian, M., Chen, J., Shi, J., Yang, Y., Hu, X., Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation (2011) PLoS One, 6, p. 20714
dc.descriptionBarroso, J.B., Corpas, F.J., Carreras, A., Rodríguez-Serrano, M., Esteban, F.J., Fernández-Ocaña, A., Chaki, M., Del Rio, L.A., Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress (2006) J. Exp. Bot., 57, pp. 1785-1793
dc.descriptionAiraki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B., Del Rio, L.A., Corpas, F.J., Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress (2012) Plant Cell Environ., 35, pp. 281-295
dc.descriptionChaki, M., Valderrama, R., Fernández-Ocaña, A.M., Carreras, A., Gómez-Rodríguez, M.V., Pedrajas, J.R., Begara-Morales, J.C., Barros, J.B., Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings (2011) J. Exp. Bot., 62, pp. 1803-1813
dc.descriptionZhao, L., Zhang, F., Guo, J., Yang, Y., Li, B., Zhang, L., Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed (2004) Plant Physiol., 134, pp. 849-857
dc.descriptionPiterková, J., Petrivalský, M., Luhová, L., Mieslerová, B., Sedlárová, M., Lebeda, A., Local and systemic production of nitric oxide in tomato responses to powdery mildew infection (2009) Mol. Plant Pathol., 10, pp. 501-513
dc.descriptionNavarre, D.A., Wendehenne, D., Durner, J., Noad, R., Klessig, D.F., Nitric oxide modulates the activity of tobacco aconitase (2000) Plant Physiol., 122, pp. 573-582
dc.descriptionAndreyev, A.Y., Kushnareva, Y.E., Starkov, A.A., Mitochondrial metabolism of reactive oxygen species (2005) Biochemistry, 70, pp. 200-214
dc.descriptionRadi, R., Cassina, A., Hodara, R., Nitric oxide and peroxynitrite interactions with mitochondria (2002) Biol. Chem., 383, pp. 401-409
dc.descriptionFeng, H., Sun, K., Li, M., Li, H., Li, X., Li, Y., Wang, Y., The expression, function and regulation of mitochondrial alternative oxidase under biotic stresses (2010) Mol. Plant Pathol., 11, pp. 429-440
dc.descriptionThomazella, D.P.T., Teixeira, P.J.P.L., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A.G., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New Phytol., 194, pp. 1025-1034
dc.descriptionBorisjuk, L., MacHerel, D., Benamar, A., Wobus, U., Rolletschek, H., Low oxygen sensing and balancing in plant seeds: A role for nitric oxide (2007) New Phytol., 176, pp. 813-823
dc.descriptionBorecký, J., Maia, I.G., Costa, A.D.T., Jezek, P., Chaimovich, H., De Andrade, P.B.M., Vercesi, A.E., Arruda, P., Functional reconstitution of Arabidopsis thaliana plant uncoupling mitochondrial protein (AtPUMP1) expressed in Escherichia coli (2001) FEBS Lett., 505, pp. 240-244
dc.languageen
dc.publisher
dc.relationBiochimica et Biophysica Acta - Bioenergetics
dc.rightsfechado
dc.sourceScopus
dc.titleModulation Of Mitochondrial Activity By S-nitrosoglutathione Reductase In Arabidopsis Thaliana Transgenic Cell Lines
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución