dc.creatorGatto S.D.
dc.creatorSantanche A.
dc.date2012
dc.date2015-06-25T20:27:09Z
dc.date2015-11-26T15:12:36Z
dc.date2015-06-25T20:27:09Z
dc.date2015-11-26T15:12:36Z
dc.date.accessioned2018-03-28T22:22:41Z
dc.date.available2018-03-28T22:22:41Z
dc.identifier9780769547480
dc.identifierProceedings - 2012 Ieee 28th International Conference On Data Engineering Workshops, Icdew 2012. , v. , n. , p. 341 - 346, 2012.
dc.identifier
dc.identifier10.1109/ICDEW.2012.58
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84869036512&partnerID=40&md5=31dc2ec4583bf9116ae0d8de56c36249
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/90683
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/90683
dc.identifier2-s2.0-84869036512
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258420
dc.descriptionModern data analysis deeply relies on computational visualization tools, specially when spatial data is involved. Important efforts in governmental and private agencies are looking for patterns and insights buried in dispersive, massive amounts of data (conventional, spatiotemporal, etc.). In Visual Analytics users must be empowered to analyze data from different perspectives, integrating, transforming, aggregating and deriving new representations of conventional as well as spatial data. However, a challenge for visual analysis tools is how to articulate such wide variety of data models and formats, specially when multiple representations of geographic elements are involved. A usual approach is to convert data to a database - e.g., a multirepresentation database - which centralizes and homogenizes them. This approach has restrictions when facing the dynamic and distributed model of the Web. In this paper we propose an on the fly and on demand multi-representation data integration and homogenization approach, named Lens, as an alternative that fits better with the Web. It combines a metamodel driven approach to transform data to a unifying multidimensional and multirepresentation model, with a middleware-based architecture for seamless and on-the-fly data access, tailored to Visual Analytics. © 2012 IEEE.
dc.description
dc.description
dc.description341
dc.description346
dc.descriptionMicrosoft,National Science Foundation,EMC,Greenplum,HP
dc.descriptionThomaz, J.T., Cook, K.A., (2004) Iluminating the Path: The Research and Development Agenda for Visual Analytics, , National Visualization and Analytics Center
dc.descriptionZhou, S., Jones, C.B., A multi-representation spatial data model (2003) Lecture Notes in Computer Science, 2750, pp. 394-411
dc.descriptionVangenot, C., Multi-representation in spatial databases using the MADS conceptual model (2004) ICA Workshop on Generalisation and Multiple Representation, pp. 1-8. , http://ica.ign.fr/Leicester/paper/Vangenot-v2-ICAWorkshop.pdf, no. August, Leicester
dc.descriptionBédard, Y., Bernier, E., Badard, T., Multiple representation spatial databases and the concept of Vuel (2007) Encyclopaedia in Geoinformatics, Hershey: Idea Group Publishing, Accepted, 2131 (7116)
dc.description(2006) Meta Object Facility (MOF) Core Specification Version 2.0, , OMG
dc.descriptionChang, D., Iyengar, S., Common warehouse metamodel (CWM) specification (2001) Object Management Group, 1. , March
dc.descriptionPoole, J., Chang, D., Tolbert, D., Mellor, D., (2003) Common Warehouse Metamodel Developer's Guide, , Wiley
dc.descriptionFidalgo, R.N., Times, V.C., Silva, J., Souza, F.F., Salgado, A.C., Providing multidimensional and geographical integration based on a GDW and metamodels (2003) Proceedings of the ISPRS Joint Workshop on Spatial, Temporal and Multi-Dimensional Data Modelling and Analysis, , Quebec, Canada
dc.descriptionMacKaness, W., Ruas, A., Sarjakoski, L.T., (2007) Generalisation of Geographic Information Cartographic Modelling and Applications, , Elsevier
dc.descriptionParent, C., Spaccapietra, S., Zimanyi, E., Donini, P., Plazanet, C., Vangenot, C., Modeling spatial data in the MADS conceptual model (1998) Symposium A Quarterly Journal in Modern Foreign Literatures, pp. 1-12
dc.descriptionBorges, K.A.V., Davis, C.A., Laender, A.H.F., OMT-G: An object-oriented data model for geographic applications (2001) GeoInformatica, 5 (3), pp. 221-260. , DOI 10.1023/A:1011482030093
dc.descriptionHan, J., Stefanovic, N., Koperski, K., Selective materialization: An efficient method for spatial data cube construction (1998) Research and Development in Knowledge Discovery and Data Mining, 1394, pp. 144-158. , ser. Lecture Notes in Computer Science, X. Wu, R. Kotagiri, and K. Korb, Eds. Springer Berlin / Heidelberg
dc.descriptionPapadias, D., Kalnis, P., Zhang, J., Tao, Y., Efficient OLAP Operations in Spatial Data Warehouses (2001) Lecture Notes in Computer Science, (2121), pp. 443-459. , Advances in Spatial and Temporal Databases
dc.descriptionRivest, S., Bedard, Y., Proulx, M.-J., Nadeau, M., Hubert, F., Pastor, J., SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data (2005) ISPRS Journal of Photogrammetry and Remote Sensing, 60 (1), pp. 17-33. , DOI 10.1016/j.isprsjprs.2005.10.002, PII S0924271605000614
dc.descriptionBédard, Y., Proulx, M.-J., Rivest, S., Badard, T., Merging hypermedia GIS with spatial on-line analytical processing: Towards hypermedia SOLAP (2006) Lecture Notes in Geoinformation and Cartography
dc.descriptionKuijpers, B., Vaisman, A., A data model for moving objects supporting aggregation (2007) Data Engineering Workshop, 2007 IEEE 23rd International Conference on, pp. 546-554. , IEEE
dc.descriptionDi Martino, S., Bimonte, S., Bertolotto, M., Ferrucci, F., Leano, V., Spatial OnLine analytical processing of geographic data through the google earth interface (2011) Geocomputation, Sustainability and Environmental Planning, pp. 163-182. , http://www.springerlink.com/index/0676Q72026212738.pdf
dc.descriptionAigner, W., Bertone, A., Miksch, S., Tominski, C., Schumann, H., Towards a conceptual framework for visual analytics of time and timeoriented data (2007) Simulation Conference, 2007 Winter, pp. 721-729
dc.descriptionAragon, C., Poon, S., Aldering, G., Thomas, R., Quimby, R., Using visual analytics to maintain situation awareness in astrophysics (2008) Visual Analytics Science and Technology, 2008. VAST'08 IEEE Symposium on, pp. 27-34. , IEEE
dc.descriptionVan Den Brand, M., Roubtsov, S., Serebrenik, A., SQuAVisiT: A flexible tool for visual software analytics (2009) Software Maintenance and Reengineering, 2009. CSMR '09. 13th European Conference on, pp. 331-332
dc.languageen
dc.publisher
dc.relationProceedings - 2012 IEEE 28th International Conference on Data Engineering Workshops, ICDEW 2012
dc.rightsfechado
dc.sourceScopus
dc.titleMulti-representation Lens For Visual Analytics
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución