dc.creatorBernal-Rodriguez M.A.
dc.creatorLiendo J.A.
dc.date2013
dc.date2015-06-25T19:14:28Z
dc.date2015-11-26T15:12:14Z
dc.date2015-06-25T19:14:28Z
dc.date2015-11-26T15:12:14Z
dc.date.accessioned2018-03-28T22:22:20Z
dc.date.available2018-03-28T22:22:20Z
dc.identifier
dc.identifierAdvances In Quantum Chemistry. , v. 65, n. , p. 203 - 229, 2013.
dc.identifier653276
dc.identifier10.1016/B978-0-12-396455-7.00008-X
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84871877066&partnerID=40&md5=cdcd7d73b504a2824c11582f666db6c1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89078
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89078
dc.identifier2-s2.0-84871877066
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258333
dc.descriptionSingle ionization of liquid water by the impact of fast, but nonrelativistic heavy charged particles is reviewed. Special attention is focused on protons, alpha particles, and carbon ions. This phenomenon has been extensively studied by using theoretical methods during the last decades. Quantum-mechanical as well as semiclassical approaches have been developed. Nevertheless, experimental studies in this field are very scarce. Based upon both theoretical and experimental results, semiempirical formalisms have been reported. At the beginning, the first Born (B1) approximation emerged with some success in reproducing ionization cross sections corresponding to impact energies above a few hundreds of keV/u. The introduction of the distorted-wave formalism brought a remarkable improvement with respect to B1, mainly because of reproduction of the well-known two-center effects. The B1 approximation is treated here in order to be used as a reference model for all the subsequent comparisons. Also presented are the distorted-wave formalism and its variants. On the other hand, available experimental works for measuring ionization cross sections corresponding to water vapor targeted by hydrogen, helium, and carbon ions are summarized. In addition, the most relevant semiempirical approaches intended to calculate water ionization cross sections are addressed. Some of the experimental single ionization cross sections mentioned above are compared to those determined by the distorted-wave and semiempirical formalisms for liquid water. Finally, perspectives on the studies of the ionization problem are briefly commented. © 2013 Elsevier Inc.
dc.description65
dc.description
dc.description203
dc.description229
dc.descriptionFriedland, W., Jacob, P., Paretzke, H., Simulation of light ion induced DNA damage patterns (2006) Radiat. Prot. Dosim., 122, p. 116
dc.descriptionDingfelder, M., Inokuti, M., Paretzke, H., Inelastic-collision cross sections of liquid water for interactions of energetic protons (2000) Radiat. Phys. Chem., 59, p. 255
dc.descriptionRudd, M.E., Kim, Y., Madison, D.H., Electron production in proton collisions with atoms and molecules: energy distributions (1992) Rev. Mod. Phys., 64, p. 441
dc.descriptionCrothers, D., McCann, J., Ionisations of atoms by ion impact (1983) J. Phys. B: At. Mol. Opt. Phys., 16, p. 3229
dc.descriptionHansen, J.P., Kocbach, L., Ejection angles of fast delta electrons from K-shell ionisation induced by energetic ions (1989) J. Phys. B, 22, pp. L71
dc.descriptionBernal, M.A., Liendo, J.A., The HKS model for electron production in liquid water by light ions (2006) Nucl. Instrum. Methods Phys. Res., Sect. B, 251, p. 171
dc.descriptionBernal, M.A., Liendo, J.A., Inelastic-collision cross sections for the interactions of totally stripped H, He and C ions with liquid water (2007) Nucl. Instrum. Methods Phys. Res., Sect. B, 262, p. 1
dc.descriptionBelkicd́, D., A quantum theory of ionisation in fast collisions between ions and atomic systems (1978) J. Phys. B: At. Mol. Phys., 11, p. 3529
dc.descriptionMcDowell, M., Coleman, J., (1970) Introduction to the Theory of Ion-Atoms Collisions, , North-Holland, Amsterdam
dc.descriptionCheshire, I.M., Continuum distorted wave approximation
dc.descriptionresonant charge transfer by fast protons in atomic hydrogen (1964) Proc. Phys. Soc., 84, p. 89
dc.descriptionLandau, L.D., Lifshitz, E.M., (1977) Quantum Mechanics: Nonrelativistic Theory, , Pergamon Press, Barcelona
dc.descriptionFainstein, P.D., Ponce, V.H., Rivarola, R.D., Electron emission from multielectronic atoms by ion impact at intermediate and high energies (1989) J. Phys. B: At. Mol. Opt. Phys., 22, p. 1207
dc.descriptionStolterfoht, N., DuBois, R., Rivarola, R.D., (1997) Electron Emission in Heavy Ion-Atom Collisions, , Springer, Berlin
dc.descriptionSecondary electron spectra from charge particle interactions (1996) Tech. Rep., 55. , ICRU, Bethesda, MD
dc.descriptionToburen, L.H., Nakai, M.Y., Langley, R.A., Measurement of high-energy charge-transfer cross sections for incident protons and atomic hydrogen in various gases (1968) Phys. Rev., 171, p. 114
dc.descriptionToburen, L.H., Wilson, W.E., Energy and angular distributions of electrons ejected from water vapour by 0.3-1.5MeV protons (1977) J. Chem. Phys., 66, p. 5202
dc.descriptionToburen, L.H., Wilson, W.E., Popovich, R.J., Secondary electron emission from ionization of water vapor by 0.3 to 2.0MeV He+ and He2+ ions (1980) Radiat. Res., 82, p. 27
dc.descriptionWilson, W.E., Miller, J.H., Toburen, L.H., Differential cross sections for ionization of methane, ammonia and water vapour by high velocity ions (1984) J. Chem. Phys., 80, p. 5601
dc.descriptionRudd, M.E., Goffe, T.V., Dubois, R.D., Cross sections for ionization of water vapor by 7-4000keV protons (1985) Phys. Rev. A, 31, p. 492
dc.descriptionRudd, M.E., Itoh, A., Goffe, T.V., Cross sections for ionization, capture, and loss for 5-450keV He+ on water vapor (1985) Phys. Rev. A, 32, p. 2499
dc.descriptionBolorizadeh, M.A., Rudd, M.E., Angular and energy dependence of cross sections for ejection of electrons from water vapor. II. 15-150keV proton impact (1996) Phys. Rev. A, 33, p. 888
dc.descriptionWerner, U., Beckord, K., Becker, J., 3D imaging of the collision-induced Coulomb fragmentation of water molecules (1995) Phys. Rev. Lett., 74, p. 1962
dc.descriptionGobet, F., Eden, S., Coupier, B., Ionization of water by (20-150)keV protons: separation of direct-ionization and electron-capture processes (2004) Phys. Rev. A, 70, p. 062716
dc.descriptionOhsawa, D., Kawauchi, K., Hirabayashi, M., An apparatus for measuring the energy and angular distribution of secondary electrons emitted from water vapor by fast heavy-ion impact (2005) Nucl. Instrum. Methods Phys. Res., Sect. B, 227, p. 431
dc.descriptionEmfietzoglou, D., Garcia-Molina, R., Kyriakou, I., A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water (2009) Phys. Med. Biol., 54, p. 3451
dc.descriptionRudd, M.E., Differential cross sections for secondary electron production by proton impact (1988) Phys. Rev. A, 38, p. 6129
dc.descriptionStopping powers and ranges for protons and alpha particles (1993) Tech. Rep., 49. , ICRU, Bethesda, MD
dc.descriptionFano, U., Penetration of protons, alpha particles, and mesons (1963) Annu. Rev. Nucl. Sci., 13 (1), pp. 1-66
dc.descriptionHayashi, H., Watanabe, N., Udagawa, Y., The complete optical spectrum of liquid water measured by inelastic X-ray scattering (2000) Proc. Natl. Acad. Sci. USA, 97, p. 6264
dc.descriptionDingfelder, M., Hantke, D., Inokuti, M., Electron inelastic scattering cross sections in liquid water (1998) Radiat. Phys. Chem., 53, p. 1
dc.descriptionHeller, J.M., Hamm, R.N., Birchoff, R.D., Collective oscillation in liquid water (1976) J. Chem. Phys., 60, p. 3483
dc.descriptionEmfietzoglou, D., Moscovitch, M., Inelastic collision characteristics of electrons in liquid water (2002) Nucl. Instrum. Methods Phys. Res., Sect. B, 193, p. 71
dc.descriptionhttp://www.nist.gov/physlab/data/ffast/index.cfmFainstein, P.D., Ponce, V.H., Rivarola, R.D., Two-centre effects in ionization by ion impact (1991) J. Phys. B: At. Mol. Opt. Phys., 24, p. 3091
dc.descriptionOlivera, G.H., Rivarola, R.D., Fainstein, P.D., Ionization of the excited states of hydrogen by proton impact (1995) Phys. Rev. A, 51 (1), p. 847
dc.descriptionBelkicd́, D., Electron detachment from the negative hydrogen ion by proton impact (1997) J. Phys. B: At. Mol. Opt. Phys., 30, p. 1731
dc.descriptionFainstein, P.D., Olivera, G.H., Rivarola, R.D., Theoretical calculations of the stopping power for protons traversing H, He and simple molecular targets (1996) Nucl. Instrum. Methods Phys. Res., Sect. B, 107, p. 19
dc.descriptionSchutten, J., DeHeer, F.J., Moustafa, H.R., Cross and partial ionization cross sections for electrons on water vapor in the energy range 0.1-20keV (1966) J. Chem. Phys., 44, p. 3924
dc.descriptionStopping of ions heavier than Helium (2005) Tech. Rep., 73. , ICRU, Bethesda, MD
dc.descriptionDal Cappello, C., Champion, C., Boudrioua, O., Theoretical and experimental investigations of electron emission in C6+-H2O collisions (2009) Nucl. Instrum. Methods Phys. Res., Sect. B, 267, p. 781
dc.descriptionEmfietzoglou, D., Nikjoo, H., Pathak, A., Electronic cross sections for proton transport in liquid water based on optical-data models (2006) Nucl. Instrum. Methods Phys. Res., Sect. B, 249, p. 26
dc.descriptionGobet, F., Farizon, B., Farizon, M., Total, partial, and electron-capture cross sections for ionization of water vapor by 20-150keV protons (2001) Phys. Rev. Lett., 86, p. 3751
dc.descriptionBelkicd́, D., Quantum-mechanical methods in loss-excitation and loss-ionization in fast ion-atom collisions (2009) Adv. Quantum Chem., 56, p. 251
dc.descriptionBelkicd́, D., Manccaroňev, I., Hanssen, J., Four-body methods for high-energy ion-atom collisions (2008) Rev. Mod. Phys., 80, p. 249
dc.descriptionKaneda, M., Shimizu, M., Hayakawa, T., Mass spectrometric study of collision interactions of fast charged particles with water and NaCl solutions (2009) Nucl. Instrum. Methods Phys. Res., Sect. B, 267, p. 908
dc.languageen
dc.publisher
dc.relationAdvances in Quantum Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleSingle Ionization Of Liquid Water By Protons, Alpha Particles, And Carbon Nuclei: Comparative Analysis Of The Continuum Distorted Wave Methodologies And Empirical Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución