Actas de congresos
Improvement Of The Electrical Contact Between Carbon Nanotubes And Metallic Electrodes By Laser Irradiation
Registro en:
9781479905188
Chip In Curitiba 2013 - Sbmicro 2013: 28th Symposium On Microelectronics Technology And Devices. Ieee Computer Society, v. , n. , p. - , 2013.
10.1109/SBMicro.2013.6676147
2-s2.0-84893439488
Autor
Silveira J.V.
Savu R.
Canesqui M.A.
Filho J.M.
Swart J.W.
Filho A.G.S.
Moshkalev S.A.
Institución
Resumen
In this work we used a new approach for electrical contact improvement between multi-wall carbon nanotubes and metallic electrodes by localized laser heating. The nanotubes were suspended, using the dielectrophoresis technique, over a gap of 1μm width and 5μm depth connecting the ends of the patterned electrodes. Subsequently, the as deposited nanotubes were directly heated, in ambient atmosphere, by a laser having a wavelength of 473nm. The Raman signal of the nanotubes, through its G band displacement, was used to determine the process temperature and this parameter was controlled by calibrating the incident power density. The changes in the nanotubes morphology were evaluated using scanning electron microscopy, Raman spectroscopy and electrical measurements. After calibration, this method was employed for improving the electrical contact between suspended multi-wall carbon nanotubes and different electrodes (W, Ti and Au). The reduction in the electrical resistance was between 80 - 99%, 80 - 95% and 10 - 90% for W, Ti and Au electrodes, respectively, resulting in contact resistivity as low as ∼1 kμm 2. © 2013 IEEE.
ACM SIGDA,IEEE,IEEE Circuits and Systems Society (CAS),SBU,Sociedade Brasileira de Computacao (SBC) Lorio, A., Dresselhaus, G., Dresselhaus, M.S., (2008) Carbon Nanotubes: Advanced Topics in Synthesis, Structure, Properties and Applications, , Springer, Berlin Heidelberg, Germany Tans, S.J., Verschuered, A.R.M., Dekker, C., Roomtemperature transistor based on a single carbon nanotube (1998) Nature, 393, pp. 49-52 Bondavalli, P., Legagneux, P., Pribat, D., Carbon nanotubes based transistors as gas sensors: State of the art and critical review (2009) Sens. Actuators, B, 140, pp. 304-318 Gelamo, R.V., Rouxinol, F.P., Verissimo, C., Vaz, A.R., Moraes De Bica, M.A., Moshkalev, S.A., Low-temperature gas and pressure sensor based on multi-wall carbon nanotubes decorated with Ti nanoparticles (2009) Chern. Phys. Lett., 482, pp. 302-306 Savu, R., Silveira, J.Y., Flacker, A., Vaz, A.R., Loanni, E., Pinto, A.C., Gobbi, A.L., Moshkalev, S.A., Micro-reactors for characterization of nanostructure-based sensors (2012) Rev. Sci. Instrum., 83, p. 055104 Krupke, R., Hennrich, F., Kappes, M.M., Uihneysen, H.V., Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes (2004) Nano Lett., 4, pp. 1395-1399 Han, S., Liu, X., Zhou, C., Template-free directional growth of single-walled carbon nanotubes on a-and r-plane sapphire (2005) J. Am. Chern. Soc., 127, pp. 5294-5295 Santini, C.A., Cott, D.J., Romo-Negreira, A., Capraro, B.D., Sanseverino, S.R., De Gendt, S., Groeseneken, G., Vereecken, P.M., Growth and characterization of horizontally suspended cnts across tin electrode gaps (2010) Nanotechnology, 21, p. 245604 Lee, J.O., Park, C., Kim, J.J., Kim, J., Park, J.W., Yoo, K.H., Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method (2000) J. Phys. D: Appl. Phys., 33, pp. 1953-1956 Woo, Y., Duesberg, G.S., Roth, S., Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing (2007) Nanotechnology, 18, p. 095203 Dong, L., Youkey, S., Bush, J., Jiao, J., Dubin, V.M., Chebiam, R.V., Eflects of local louie heating on the reduction of contact resistance between carbon nanotubes and metal electrodes (2007) J. Appl. Phys., 101, p. 024320 Chen, C., Van, L., Kong, E.S.W., Zhang, Y., Ultrasonic nanowelding of carbon nanotubes to metal electrodes (2006) Nanotechnology, 17, pp. 2192-2197 Rykaczewski, K., Henry, M.R., Fedorov, A.G., Electron beam induced deposition of residual hydrocarbons in the presence of a multiwall carbon nanotube (2009) Appl. Phys. Lett., 95, p. 113112 Madsen, D.N., Molhave, K., Mateiu, R., Rasmussen, A.M., Brorson, M., Jacobsen, C.J.H., Boggild, P., Soldering of nanotubes onto microelectrodes (2003) Nano Letters, 3, pp. 47-49 Yoon, Y.H., Vi, S.M., Vim, J.R., Lee, J.H., Rozgonyi, G., Joo, Y.C., Microstructure and electrical properties of high power laser thermal annealing on ink;jet-printed Ag films (2010) Microelectron. Eng., 87, pp. 2230-2233 Misra, N., Xu, L., Pan, Y., Cheung, N., Grigoropoulos, C.P., Excimer laser annealing of silicon nanowires (2007) Appl. Phys. Lett., 90, p. 111111 Wankerl, A., Schremer, A.T., Shealy, J.R., Laser stimulated selective area growth of quantum dots (1998) Appl. Phys. Lett., 72, p. 3332 Lan, C., Srisungsitthisunti, P., Amama, P.B., Fisher, T., Xu, X., Reifenberger, R., Measurement of metal! carbon nanotube contact resistance by adjusting contact length using laser ablation (2008) Nanotechnology, 19, p. 125703 Huang, F.M., Vue, K.T., Tan, P., Zhang, S.L., Shi, Z.J., Zhou, X.H., Gu, Z.N., Temperature dependence of the Raman spectra of carbon nanotubes (1998) J. Appl. Phys, 84, p. 4022 Cancado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.Y.O., Ferrari, A.C., Quantifying defects in graphene via raman spectroscopy at different excitation energies (2011) Nano Letters, 11, pp. 3190-3196 Olevik, D., Soldatov, A.V., Dossot, M., Vigolo, B., Humbert, B., McRae, E., Stability of carbon nanotubes to laser irradiation probed by Raman spectroscopy (2008) Phys. Stat. Sol. B, 245, pp. 2212-2215