dc.creator | Rocha D.I. | |
dc.creator | Dornelas M.C. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:14:03Z | |
dc.date | 2015-11-26T15:11:51Z | |
dc.date | 2015-06-25T19:14:03Z | |
dc.date | 2015-11-26T15:11:51Z | |
dc.date.accessioned | 2018-03-28T22:21:58Z | |
dc.date.available | 2018-03-28T22:21:58Z | |
dc.identifier | Cab Reviews: Perspectives In Agriculture, Veterinary Science, Nutrition And Natural Resources. , v. 8, n. , p. - , 2013. | |
dc.identifier | 10.1079/PAVSNNR20138022 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84878324839&partnerID=40&md5=86cb2d4a6265a2114e0b306e7262d147 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/89017 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/89017 | |
dc.identifier | 2-s2.0-84878324839 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1258245 | |
dc.description | The developmental pathway leading to plant somatic embryogenesis (SE) is true demonstration of totipotency of plant cells. During this process, somatic cells, under appropriate conditions, divide and differentiate into embryos. This developmental pathway plays an important role as an efficient means for plant regeneration and large-scale propagation. It includes a profound reprogramming of gene expression leading to changes in cell division and differentiation patterns, becoming a suitable platform to study the morpho-physiological and molecular aspects involved in plant cell differentiation and embryo development. Plant growth regulators such as auxin, as well as stress factors and DNA methylation, are key components to induce entry into SE pathways. Proteome and transcriptome analysis allowed isolation and characterization of embryogenic-specific gene markers involved in promoting vegetative-to- embryogenic transition as well as in maturation of somatic embryos contributing to the understanding of complex relationships between inductive conditions and somatic embryo formation. This review describes current advances made, mainly at the molecular level, in discovery of the main factors involved in the induction and maturation of somatic embryos providing a basic background for understanding genetic reprogramming that is at the heart of this process. We paid special attention to extracellular protein markers during SE as well as to auxin, abscisic acid and ethylene response genes, transcriptor factors and proteins involved in embryogenic competence acquisition. © CAB International 2013. | |
dc.description | 8 | |
dc.description | Karami, O., Aghavaisi, B., Pour, A.M., Molecular aspects of somatic-to-embryogenic transition in plants (2009) Journal of Chemical Biology, 2, pp. 177-190 | |
dc.description | Howell, S.H., (1998) Molecular Genetics of Plant Development, , 1st Ed. Cambridge University Press, Cambridge, UK | |
dc.description | Yang, X., Zhang, X., Regulation of somatic embryogenesis in higher plants (2010) Critical Reviews in Plant Sciences, 29, pp. 36-57 | |
dc.description | Garces, H.M.P., Champagne, C.E.M., Townsley, B.T., Park, S., Malho, R., Pedroso, M.C., Harada, J.J., Sinha, N.R., Evolution of asexual reproduction in leaves of the genus Kalanchoë (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (39), pp. 15578-15583. , DOI 10.1073/pnas.0704105104 | |
dc.description | Rose, R.J., Mantiri, F.R., Kurdyukov, S., Chen, S.-K., Wang, X.-D., Nolan, K.E., Developmental biology of somatic embryogenesis (2010) Plant Developmental Biology-Biotechnological Perspectives, 2, pp. 3-26. , Pua EC, Davey MR, editors. Springer, Heidelberg, Germany | |
dc.description | Jiménez, V.M., Bangerth, F., Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot (2001) Physiology Plant, 111, pp. 389-395 | |
dc.description | Namasivayam, P., Acquisition of embryogenic competence during somatic embryogenesis (2007) Plant Cell, Tissue and Organ Culture, 90 (1), pp. 1-8. , DOI 10.1007/s11240-007-9249-9 | |
dc.description | Braybrook, S.A., Harada, J.J., LECs go crazy in embryo development (2008) Trends in Plant Science, 13, pp. 624-630 | |
dc.description | Fehér, A., Why somatic plant cells start to form embryos? (2006) Somatic Embryogenesis., Plant Cell Monographs, 2, pp. 85-101. , Mujid A., Samaj J editors, Springer-Verlag, Heidelberg, Germany | |
dc.description | Pasternak, T.P., Prinsen, E., Ayaydin, F., Miskolczi, P., Potters, G., Asard, H., Van Onckelen, H.A., Feher, A., The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (2002) Plant Physiology, 129 (4), pp. 1807-1819. , DOI 10.1104/pp.000810 | |
dc.description | Yeung, E.C., Structural and development patterns in somatic embryogenesis (1995) Vitro Embryogenesis in Plants, pp. 205-247. , Thorpe TA, editor. Kluwer, Netherlands | |
dc.description | Ledwon, A., Gaj, M.D., LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells (2009) Plant Cell Reports, 28, pp. 1677-1688 | |
dc.description | Luerssen, H., Kirik, V., Herrman, P., Misera, S., FUSCA3 encodes a protein with a conserved Vp1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana (1998) Plant Journal, 15, pp. 755-764 | |
dc.description | Stone, S.L., Braybrook, S.A., Paula, S.L., Kwong, L.W., Meuser, J., Pelletier, J., Hsieh, T.-F., Harada, J.J., Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (8), pp. 3151-3156. , http://www.pnas.org/cgi/reprint/105/8/3151, DOI 10.1073/pnas.0712364105 | |
dc.description | Rashid, S.Z., Yamaji, N., Kyo, M., Shoot formation from root tip region: A developmental alteration by WUS in transgenic tobacco (2007) Plant Cell Reports, 26 (9), pp. 1449-1455. , DOI 10.1007/s00299-007-0342-7 | |
dc.description | Ledwon, A., Gaj, M.D., LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis (2011) Plant Growth Regulation, 65, pp. 157-167 | |
dc.description | Lotan, T., Ohto, M., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells (1998) Cell, 93, pp. 1195-1205 | |
dc.description | Parcy, F., Valon, C., Kohara, A., Misera, S., Giraudat, J., The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of arabidopsis seed development (1997) Plant Cell, 9 (8), pp. 1265-1277. , DOI 10.1105/tpc.9.8.1265 | |
dc.description | Wang, H., Guo, J., Lambert, K.N., Lin, Y., Developmental control of Arabidopsis seed oil biosynthesis (2007) Planta, 226 (3), pp. 773-783. , DOI 10.1007/s00425-007-0524-0 | |
dc.description | Kwong, R.W., Bui, A.Q., Lee, H., Kwong, L.W., Fischer, R.L., Goldberg, R.B., Harada, J.J., LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development (2003) Plant Cell, 15 (1), pp. 5-18. , DOI 10.1105/tpc.006973 | |
dc.description | Suzuki, M., McCarty, D.R., Functional symmetry of the B3 network controlling seed development (2008) Current Opinion of Plant Biology, 11, pp. 548-553 | |
dc.description | Stewards, F.C., Mapbs, M.O., Mears, K., Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells (1958) American Journal of Botany, 45, pp. 705-708 | |
dc.description | Kagaya, Y., Toyoshima, R., Okuda, R., Usui, H., Yamamoto, A., Hattori, T., Leafy cotyledon1 controls seed storage protein genes through its regulation of FUSCA3 and abscisic acid insensitive 3 (2005) Plant Cell Physiology, 46, pp. 399-316 | |
dc.description | Casson, S.A., Lindsey, K., The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity (2006) Plant Physiology, 142 (2), pp. 526-541. , DOI 10.1104/pp.106.080895 | |
dc.description | Braybrook, S.A., Stone, S.L., Park, S., Bui, A.Q., Le, B.H., Fischer, R.L., Goldberg, R.B., Harada, J.J., Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (9), pp. 3468-3473. , DOI 10.1073/pnas.0511331103 | |
dc.description | Harding, E.W., Tang, W., Nichols, K.W., Fernandez, D.E., Perry, S.E., Expression and Maintenance of Embryogenic Potential Is Enhanced through Constitutive Expression of AGAMOUS-Like 15 (2003) Plant Physiology, 133 (2), pp. 653-663. , DOI 10.1104/pp.103.023499 | |
dc.description | Wang, H., Caruso, L.V., Downie, A.B., Perry, S.E., The embryo Mads domain protein Agamous-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism (2004) Plant Cell, 16 (5), pp. 1206-1219. , DOI 10.1105/tpc.021261 | |
dc.description | Liscum, E., Reed, J.W., Genetics of Aux/IAA and ARF action in plant growth and development (2002) Plant Molecular Biology, 49 (3-4), pp. 387-400. , DOI 10.1023/A:1015255030047 | |
dc.description | Gazzarrini, S., Tsuchiya, Y., Lumba, S., Okamoto, M., McCourt, P., The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones Gibberellin and abscisic acid (2004) Developmental Cell, 7 (3), pp. 373-385. , DOI 10.1016/j.devcel.2004.06.017, PII S1534580704002746 | |
dc.description | Riechmann, J.L., Meyerowitz, E.M., The AP2/EREBP family of plant transcription factors (1998) Biological Chemistry, 379 (6), pp. 633-646 | |
dc.description | Feng, J.-X., Liu, D., Pan, Y., Gong, W., Ma, L.-G., Luo, J.-C., Deng, X.W., Zhu, Y.-X., An Annotation Update via cDNA Sequence Analysis and Comprehensive Profiling of Developmental, Hormonal or Environmental Responsiveness of the Arabidopsis AP2/EREBP Transcription Factor Gene Family (2005) Plant Molecular Biology, 59 (6), pp. 853-868. , DOI 10.1007/s11103-005-1511-0 | |
dc.description | Nole-Wilson, S., Tranby, T.L., Krizek, B.A., AINTEGUMENTA -like (AIL) genes are expressed in young tissues and (2005) Plant Molecular Biology, 57, pp. 613-628. , may specify meristematic or division-competent states | |
dc.description | Fehér, A., The initiation phase of somatic embryogenesis: What we know and what we don't (2008) Acta Biologica Szegediensis, 52, pp. 53-56 | |
dc.description | Ohto, M.-A., Fischer, R.L., Goldberg, R.B., Nakamura, K., Harada, J.J., Control of seed mass by APETALA2 (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (8), pp. 3123-3128. , DOI 10.1073/pnas.0409858102 | |
dc.description | Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q.J., Gerentes, D., Aintegumenta, an Apetala2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth (1996) Plant Cell, 8, pp. 155-168 | |
dc.description | Cernac, A., Benning, C., WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis (2004) Plant Journal, 40 (4), pp. 575-585. , DOI 10.1111/j.1365-313X.2004.02235.x | |
dc.description | Boutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Van Lookeren Campagne, M.M., Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth (2002) Plant Cell, 14 (8), pp. 1737-1749. , DOI 10.1105/tpc.001941 | |
dc.description | Kulinska-Lukaszek, K., Tobojka, M., Adamiok, A., Kurczynska, E.U., Expression of the BBM gene during somatic embryogenesis of Arabidopsis thaliana (2012) Biologia Plantarum, 56, pp. 389-394 | |
dc.description | Heidmann, I., Lange, B., Lambalk, J., Angenent, G.C., Boutilier, K., Efficient sweet pepper transformation mediated by the baby boom transcription factor (2011) Plant Cell Reports, 30, pp. 1107-1115 | |
dc.description | Srinivasan, C., Liu, Z., Heidmann, I., Supena, E.D.J., Fukuoka, H., Joosen, R., Lambalk, J., Boutilier, K., Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.) (2007) Planta, 225 (2), pp. 341-351. , DOI 10.1007/s00425-006-0358-1 | |
dc.description | Passarinho, P., Ketelaar, T., Xing, M., Van Arkel, J., Maliepaard, C., Hendriks, M., BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways (2008) Plant Molecular Biology, 68, pp. 225-237 | |
dc.description | Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M., Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression (2000) Plant Cell, 12 (3), pp. 393-404. , DOI 10.1105/tpc.12.3.393 | |
dc.description | Guo, H., Ecker, J.R., The ethylene signaling pathway: New insights (2004) Current Opinion in Plant Biology, 7 (1), pp. 40-49. , DOI 10.1016/j.pbi.2003.11.011 | |
dc.description | Puigderrajols, P., Celestino, C., Suils, M., Toribio, M., Molinas, M., Histology of organogenic and embryogenic responses in cotyledons of somatic embryos of Quercus suber L. (2000) International Journal of Plant Sciences, 161 (3), pp. 353-362. , DOI 10.1086/314266 | |
dc.description | Parenicova, L., De Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Colombo, L., Molecular and phylogenetic analyses of the complete MADS-Box transcription factor family in Arabidopsis: New openings to the MADS world (2003) Plant Cell, 15 (7), pp. 1538-1551. , DOI 10.1105/tpc.011544 | |
dc.description | Thakare, D., Tang, W., Hill, K., Perry, S.E., The MADS-domain transcriptional regulator Agamous-Like15 promotes somatic embryo development in arabidopsis and soybean (2008) Plant Physiology, 146 (4), pp. 1663-1672. , http://www.plantphysiol.org/cgi/reprint/146/4/1663, DOI 10.1104/pp.108.115832 | |
dc.description | Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., Fang, S.-C., The embryo MADS domain factor AGL15 acts postembryonically: Inhibition of perianth senescence and abscission via constitutive expression (2000) Plant Cell, 12 (2), pp. 183-197. , DOI 10.1105/tpc.12.2.183 | |
dc.description | Zheng, Y., Ren, N., Wang, H., Stromberg, A.J., Perry, S.E., Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-like15 (2009) Plant Cell, 21, pp. 2563-2577 | |
dc.description | Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., Laux, T., Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana (2004) Development, 131 (3), pp. 657-668. , DOI 10.1242/dev.00963 | |
dc.description | Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., Laux, T., Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem (1998) Cell, 95 (6), pp. 805-815. , DOI 10.1016/S0092-8674(00)81703-1 | |
dc.description | Zhang, X., Zong, J., Liu, J., Yin, J., Zhang, D., Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar (2010) Journal Integrative Plant Biology, 52, pp. 1016-1026 | |
dc.description | Santa-Catarina, C., Oliveira, R.R., Cutri, L., Floh, E.I.S., Dornelas, M.C., WUSCHEL-related genes are expressed during somatic embryogenesis of the basal angiosperm Ocotea catharinensis Mez. (Lauraceae) (2012) Trees, 26, pp. 493-501 | |
dc.description | Nardmann, J., Reisewitz, P., Werr, W., Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms (2009) Molecular Biology and Evolution, 26, pp. 1745-1755 | |
dc.description | Zuo, J., Niu, Q.-W., Frugis, G., Chua, N.-H., The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis (2002) Plant Journal, 30 (3), pp. 349-359. , DOI 10.1046/j.1365-313X.2002.01289.x | |
dc.description | Moura, E.F., Ventrella, M.C., Motoike, S.Y., Sá Jr., A.Q., Carvalho, M., Manfio, C.E., Histological study of somatic embryogenesis induction on zygotic embryos of macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius) (2008) Plant Cell Tissue Organ Culture, 95, pp. 175-184 | |
dc.description | Bhalla, P.L., Singh, M.B., Molecular control of stem cell maintenance in shoot apical meristem (2006) Plant Cell Reports, 25, pp. 249-256 | |
dc.description | Mordhorst, A.P., Toonen, M.A.J., De Vries, S.C., Plant Embryogenesis (1997) Critical Reviews in Plant Sciences, 16 (6), pp. 535-576 | |
dc.description | Su, Y.H., Zhao, X.Y., Liu, Y.B., Zhang, C.L., O'Neil, S.D., Zhang, X.S., Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis (2009) Plant Journal, 59, pp. 448-460 | |
dc.description | Dixon, D.P., Lapthorn, A., Edwards, R., Plant glutathione transferases (2002) Genome Biology, 3, pp. 30041-30020 | |
dc.description | Singla, B., Tyagi, A.K., Khurana, J.P., Khurana, P., Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions (2007) Plant Molecular Biology, 65 (5), pp | |
dc.description | Rocha, D.I., Vieira, L.M., Tanaka, F.A., Silva, L.C., Otoni, W.C., Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata masters: Histocytological and histochemical evidences (2012) Protoplasma, 249, pp. 747-758 | |
dc.description | Zavattieri, M.A., Frederico, A.M., Lima, M., Sabino, R., Arnholdt-Schmitt, B., Induction of somatic embryogenesis as an example of stress-related plant reactions (2010) Electronic Journal of Biotechnology, 13, pp. 1-9 | |
dc.description | Feher, A., Pasternak, T.P., Dudits, D., Transition of somatic plant cells to an embryogenic state (2003) Plant Cell, Tissue and Organ Culture, 74 (3), pp. 201-228. , DOI 10.1023/A:1024033216561 | |
dc.description | Gaj, M.D., Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh (2004) Plant Growth Regulation, 43 (1), pp. 27-47. , DOI 10.1023/B:GROW.0000038275.29262.fb | |
dc.description | Charriere, F., Hahne, G., Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: Role of plant growth regulators (1998) Plant Science, 137 (1), pp. 63-71. , DOI 10.1016/S0168-9452(98)00128-9, PII S0168945298001289 | |
dc.description | Ogata, Y., Iizuka, M., Nakayama, D., Ikeda, M., Kamada, H., Koshiba, T., Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed-coat-derived carrot somatic embryos (2005) Planta, 221 (3), pp. 417-423. , DOI 10.1007/s00425-004-1449-5 | |
dc.description | Kikuchi, A., Sanuki, N., Higashi, K., Koshiba, T., Kamada, H., Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells (2006) Planta, 223 (4), pp. 637-645. , DOI 10.1007/s00425-005-0114-y | |
dc.description | Hatanaka, T., Sawabe, E., Azuma, T., Uchida, N., Yasuda, T., The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora (1995) Plant Science, 107, pp. 199-204 | |
dc.description | Chen, J.T., Chang, W.C., 1-aminocyclopropane-1-carboxylic acid enhanced direct somatic embryogenesis from Oncidium leaf cultures (2003) Biologia Plantarum, 46 (3), pp. 455-458. , DOI 10.1023/A:1024307025893 | |
dc.description | Woodward, A.W., Bartel, B., Auxin: Regulation, action, and interaction (2005) Annals of Botany, 95 (5), pp. 707-735. , DOI 10.1093/aob/mci083 | |
dc.description | Teale, W.D., Paponov, I.A., Palme, K., Auxin in action: Signalling, transport and the control of plant growth and development (2006) Nature Reviews Molecular Cell Biology, 7 (11), pp. 847-859. , DOI 10.1038/nrm2020, PII NRM2020 | |
dc.description | Möller, B., Weijers, D., Auxin control of embryo patterning (2009) Cold Spring Harbour Perspectives in Biology, 1 (5), pp. a001545. , doi: 10.1101/cshperspect.a001545 (published online) | |
dc.description | Knauss, S., Rohrmeier, T., Lehle, L., The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues (2003) Journal of Biological Chemistry, 278 (26), pp. 23936-23943. , DOI 10.1074/jbc.M212585200 | |
dc.description | Padmanabhan, K., Cantliffe, D.J., Koch, K.E., Auxin-regulated gene expression and embryogenic competence in callus cultures of sweetpotato, Ipomoea batatas (L.) Lam (2001) Plant Cell Reports, 20 (3), pp. 187-192. , DOI 10.1007/s002990000306 | |
dc.description | Popescu, S.C., Popescu, G.V., Bachan, S., Zhang, Z., Seay, M., Gerstein, M., Snyder, M., Dinesh-Kumar, S.P., Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (11), pp. 4730-4735. , DOI 10.1073/pnas.0611615104 | |
dc.description | Kitamiya, E., Suzuki, S., Sano, T., Nagata, T., Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D (2000) Plant Cell Reports, 19 (6), pp. 551-557. , DOI 10.1007/s002990050772 | |
dc.description | Chugh, A., Khurana, P., Gene expression during somatic embryogenesis - Recent advances (2002) Current Science, 83 (6), pp. 715-730 | |
dc.description | Montero-Cortés, M., Rodri'Uez-Paredes, F., Burgeff, C., Pérez-Nuñez, T., Córdova, I., Oropeza, C., Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm (2010) Plant Cell Tissue and Organ Culture, 102, pp. 251-258 | |
dc.description | Footitt, S., Ingouff, M., Clapham, D., Von Arnold, S., Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst) (2003) Journal of Experimental Botany, 54 (388), pp. 1711-1719. , DOI 10.1093/jxb/erg178 | |
dc.description | Che, P., Love, T.M., Frame, B.R., Wang, K., Carriquiry, A.L., Howell, S.H., Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures (2006) Plant Molecular Biology, 62 (1-2), pp. 1-14. , DOI 10.1007/s11103-006-9013-2 | |
dc.description | Sato, S., Toya, T., Kawahara, R., Whittier, R.F., Fukuda, H., Komamine, A., Isolation of a carrot gene expressed specifically during early stage somatic embryogenesis (1995) Plant Molecular Biology, 28, pp. 39-46 | |
dc.description | Chakrabarty, D., Yu, K.W., Paek, K.Y., Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus) (2003) Plant Science, 165 (1), pp. 61-68. , DOI 10.1016/S0168-9452(03)00127-4 | |
dc.description | Schellenbaum, P., Mohler, V., Wenzel, G., Walter, B., Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.) (2008) BMC Plant Biology, 15 (8), p. 78 | |
dc.description | Shibukawa, T., Yazawa, K., Kikuchi, A., Kamada, H., Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 50 -upstream region (2009) Gene, 437, pp. 22-31 | |
dc.description | Furner, I.J., Matzke, M., Methylation and demethylation of the Arabidopsis genome (2011) Current Opinion Plant Biology, 14, pp. 137-141 | |
dc.description | Rodrigues, J.C., Luo, M., Berger, F., Koltunow, A.M., Polycomb group gene function in sexual and asexual seed development in angiosperms (2010) Sex Plant Reprodution, 23, pp. 123-133 | |
dc.description | Zhang, M., Kimatu, J.N., Xu, K., Liu, B., DNA cytosine methylation in plant development (2010) Journal Genetics Genomics, 37, pp. 1-12 | |
dc.description | Leljak-Levanic, D., Bauer, N., Mihaljevic, S., Jelaska, S., Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. (2004) Plant Cell Reports, 23 (3), pp. 120-127. , DOI 10.1007/s00299-004-0819-6 | |
dc.description | Finkelstein, R., Reeves, W., Ariizumi, T., Steber, C., Molecular aspects of seed dormancy (2008) Annual Review of Plant Biology, 59, pp. 387-415. , DOI 10.1146/annurev.arplant.59.032607.092740 | |
dc.description | Tuteja, N., Abscisic acid and abiotic stress signaling (2007) Plant Signaling and Behavior, 2 (3), pp. 135-138 | |
dc.description | Nishiwaki, M., Fujino, K., Koda, Y., Masuda, K., Kikuta, Y., Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture (2000) Planta, 211, pp. 756-769 | |
dc.description | Stasolla, C., Kong, L., Yeung, E.C., Thorpe, T.A., Maturation of somatic embryos in conifers: Morphogenesis, physiology, biochemistry, and molecular biology (2002) Vitro Cellular and Developmental Biology - Plant, 38 (2), pp. 93-105. , DOI 10.1079/IVP2001262 | |
dc.description | Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Higashi, K., Satoh, S., Kamada, H., Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot (1992) Plant Molecular Biology, 19, pp. 239-249 | |
dc.description | Jimenez, V.M., Bangerth, F., Endogenous hormone concentrations and embryogenic callus development in wheat (2001) Plant Cell, Tissue and Organ Culture, 67 (1), pp. 37-46. , DOI 10.1023/A:1011671310451 | |
dc.description | Rai, M.K., Shekhawat, N.S., Gupta, A.K., Phulwaria, M., Ram, K., Jaiswal, U., The role of abscisic acid in plant tissue culture: A review of recent progress (2011) Plant Cell Tissue Organ Culture, 106, pp. 179-190 | |
dc.description | Shiota, H., Satoh, R., Watabe, K.-I., Harada, H., Kamada, H., C-ABI3, the Carrot Homologue of the Arabidopsis ABI3, is Expressed during Both Zygotic and Somatic Embryogenesis and Functions in the Regulation of Embryo-Specific ABA-Inducible Genes (1998) Plant and Cell Physiology, 39 (11), pp. 1184-1193 | |
dc.description | Shiota, H., Kamada, H., Acquisition of desiccation tolerance by cultured carrot cells upon ectopic expression of C-ABI3, a carrot homolog of ABI3 (2000) Journal of Plant Physiology, 156 (4), pp. 510-515 | |
dc.description | Ikeda-Iwai, M., Umehara, M., Kamada, H., Embryogenesisrelated genes: Its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis (2006) Plant Biotechnology, 23, pp. 153-161 | |
dc.description | Karami, O., Saidi, A., The molecular basis for stress-induced acquisition of somatic embryogenesis (2010) Molecular Biology Reports, 37, pp. 2493-2507 | |
dc.description | Kepczynska, E., Rudus, I., Kepczynski, J., Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L (2009) Plant Growth Regulation, 59, pp. 63-73 | |
dc.description | Lu, J., Vahala, J., Pappinen, A., Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.) (2011) Plant Cell Tissue and Organ Culture, 107, pp. 25-33 | |
dc.description | Mauri, P.V., Manzanera, J.A., Somatic embryogenesis of holmoak (Quercus ilex L.): Ethylene production and polyamine content (2011) Acta Physiologiae Plantarum, 33, pp. 717-723 | |
dc.description | El Meskaoui, A., Tremblay, F.M., Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities (2001) Journal of Experimental Botany, 52 (357), pp. 761-769 | |
dc.description | Ptak, A., El. Tahchy, A., Wyzgolik, A., Henry, M., Laurain-Mattar, D., Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures (2010) Plant Cell Tissue and Organ Culture, 102, pp. 61-67 | |
dc.description | Wang, K.L.C., Li, H., Ecker, J.R., Ethylene biosynthesis and signaling networks (2002) Plant Cell, 141, pp. 31-51 | |
dc.description | Mantiri, F.R., Kurdyukov, S., Lohar, D.P., Sharopova, N., Saeed, N.A., Wang, X.-D., Vandenbosch, K.A., Rose, R.J., The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula (2008) Plant Physiology, 146 (4), pp. 1622-1636. , http://www.plantphysiol.org/cgi/reprint/146/4/1622, DOI 10.1104/pp.107.110379 | |
dc.description | Mantiri, F.R., Kurdyukov, S., Chen, S.K., Rose, R.J., The transcription factor MtSERF1 (2008) Plant Signaling and Behavior, 3, pp. 498-500. , may function as a nexus between stress and development in somatic embryogenesis in edicago truncatula | |
dc.description | Tsuchisaka, A., Yu, G.X., Jin, H.L., Alonso, J.M., Ecker, J.R., Zhang, X.M., A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana (2009) Genetics, 183, pp. 979-1003 | |
dc.description | Baudino, S., Hansen, S., Brettschneider, R., Hecht, V.F.G., Dresselhaus, T., Lorz, H., Dumas, C., Rogowsky, P.M., Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family (2001) Planta, 213 (1), pp. 1-10. , DOI 10.1007/s004250000471 | |
dc.description | Schmidt, E.D.L., Guzzo, F., Toonen, M.A.J., De Vries, S.C., A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos (1997) Development, 124 (10), pp. 2049-2062 | |
dc.description | Hecht, V., Vielle-Calzada, J.-P., Hartog, M.V., Schmidt, E.D.L., Boutilier, K., Grossniklaus, U., De Vries, S.C., The arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture (2001) Plant Physiology, 127 (3), pp. 803-816. , DOI 10.1104/pp.127.3.803 | |
dc.description | Nolan, K.E., Irwanto, R.R., Rose, R.J., Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures (2003) Plant Physiology, 133 (1), pp. 218-230. , DOI 10.1104/pp.103.020917 | |
dc.description | Thomas, C., Meyer, D., Himber, C., Steinmetz, A., Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis (2004) Plant Physiology and Biochemistry, 42 (1), pp. 35-42. , DOI 10.1016/j.plaphy.2003.10.008 | |
dc.description | Santa-Catarina, C., Hanai, L.R., Dornelas, M.C., Viana, A.M., Floh, E.I.S., SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. (Lauraceae) (2004) Plant Cell, Tissue and Organ Culture, 79 (1), pp. 53-61. , DOI 10.1023/B:TICU.0000049450.56271.f0 | |
dc.description | Albertini, E., Marconi, G., Reale, L., Barcaccia, G., Porceddu, A., Ferranti, F., Falcinelli, M., SERK and APOSTART. Candidate genes for apomixis in Poa pratensis (2005) Plant Physiology, 138 (4), pp. 2185-2199. , DOI 10.1104/pp.105.062059 | |
dc.description | Hu, H., Xiong, L., Yang, Y., Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection (2005) Planta, 222 (1), pp. 107-117. , DOI 10.1007/s00425-005-1534-4 | |
dc.description | Santos, M.O., Romano, E., Yotoko, K.S.C., Tinoco, M.L.P., Dias, B.B.A., Aragao, F.J.L., Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis (2005) Plant Science, 168, pp. 723-729 | |
dc.description | Pérez-Núñez, M.T., Souza, R., Sáenz, L., Chan, J.L., Zúñiga-Aguilar, J.J., Oropeza, C., Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos (2009) Plant Cell Reports, 28, pp. 11-19 | |
dc.description | Sharma, S.K., Millam, S., Hein, I., Bryan, G.J., Cloning and molecular characterization of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis (2008) Planta, 228, pp. 319-330 | |
dc.description | Singla, B., Khurana, J.P., Khurana, P., Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum (2008) Plant Cell Reports, 27, pp. 833-843 | |
dc.description | Schellenbaum, P., Jacques, A., Maillot, P., Bertsch, C., Mazet, F., Farine, S., Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.) (2008) Plant Cell Reports, 27, pp. 1799-1719 | |
dc.description | Huang, X., Lu, X.Y., Zhao, J.T., Chen, J.K., Dai, X.M., Xiao, W., MaSERK1 gene expression associated with somatic embryogenic competence and disease resistance response in banana (Musa spp.) (2010) Plant Molecular Biology Reporter, 28, pp. 309-316 | |
dc.description | Savona, M., Mattiol, R., Nigro, S., Falasca, G., Rovere, F.D., Costantino, P., Two SERK genes are markers of pluripotency in Cyclamen persicum Mill (2012) Journal of Experimental Botany, 63, pp. 471-488 | |
dc.description | Steiner, N., Santa-Catarina, C., Guerra, M.P., Cutri, L., Dornelas, M.C., Floh, E.I.S., A gymnosperm homolog of somatic embryogenesis receptor-like kinase-1 (SERK1) is expressed during somatic embryogenesis (2012) Plant Cell Tissue Organ Culture, 109, pp. 41-50 | |
dc.description | Nolan, K.E., Kurdyukov, S., Rose, R.J., Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence (2011) BMC Plant Biology, 11, pp. 44-60 | |
dc.description | Zhang, S., Liu, X., Lin, Y., Xie, G., Fu, F., Liu, H., Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture (2011) Plant Cell, Tissue and Organ Culture, 105, pp. 29-37 | |
dc.description | Li, J., Multi-tasking of somatic embryogenesis receptor-like protein kinases (2010) Current Opinion in Plant Biology, 13, pp. 509-514 | |
dc.description | Karlova, R., Boeren, S., Russinova, E., Aker, J., Vervoort, J., De Vries, S., The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1 (2006) Plant Cell, 18 (3), pp. 626-638. , DOI 10.1105/tpc.105.039412 | |
dc.description | Gou, X., Yin, H., He, K., Du, J., Yi, J., Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling (2012) PLoS Genetics, 8, pp. e1002452 | |
dc.description | Batistič, O., Kudla, J., Analysis of calcium signaling pathways in plants (2012) Biochimica et Biophysica Acta, 1820, pp. 1283-1293 | |
dc.description | Takeda, T., Inose, H., Matsuoka, H., Stimulation of somatic embryogenesis in carrot cells by the addition of calcium (2003) Biochemical Engineering Journal, 14 (2), pp. 143-148. , DOI 10.1016/S1369-703X(02)00186-9, PII S1369703X02001869 | |
dc.description | Anil, V.S., Rao, K.S., Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger (2000) Plant Physiology, 123 (4), pp. 1301-1311 | |
dc.description | Suprasanna, P., Desai, N.S., Nishanth, G., Ghosh, S.B., Laxmi, N., Bapat, V.A., Differential gene expression in embryogenic, non-embryogenic and desiccation induced cultures of sugarcane (2004) Sugar Technology, 6, pp. 305-309 | |
dc.description | Kiselev, K.V., Gorpenchenko, T.Yu., Tchernoded, G.K., Dubrovina, A.S., Grishchenko, O.V., Bulgakov, V.P., Zhuravlev, Yu.N., Calcium-dependent mechanism of somatic embryogenesis in Panax ginseng cell cultures expressing the rolC oncogene (2008) Molecular Biology, 42 (2), pp. 243-252. , DOI 10.1134/S0026893308020106 | |
dc.description | Kiselev, K.V., Turlenko, A.V., Zhuravlev, Y.N., CDPK gene expression in somatic embryos of Panax ginseng expressing rolC (2009) Plant Cell Tissue Organ Culture, 99, pp. 141-149 | |
dc.description | Ramakrishna, A., Giridhar, G., Ravishankar, G.A., Calcium and calcium ionophore A23187 induce high-frequency somatic embryogenesis in cultured tissues of Coffea canephora P ex Fr (2011) Vitro Cellular Developmental Biology - Plant, 47, pp. 667-673 | |
dc.description | Overvoorde, P.J., Grimes, H.D., The role of calcium and calmodulin in carrot somatic embryogenesis (1994) Plant and Cell Physiology, 35 (2), pp. 135-144 | |
dc.description | Davletova, S., Meszaros, T., Miskolczi, P., Oberschall, A., Torok, K., Magyar, Z., Dudits, D., Deak, M., Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells (2001) Journal of Experimental Botany, 52 (355), pp. 215-221 | |
dc.description | Anil, V.S., Harmon, A.C., Rao, K.S., Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood (2000) Plant Physiology, 122 (4), pp. 1035-1043 | |
dc.description | Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., Gruissem, W., Calmodulins and calcine urin B-like proteins: Alcium sensors for specific signal response coupling in plants (2002) Plant Cell, 14, pp. 389-400 | |
dc.description | Zhu, H., Tu, L., Jin, S., Xu, L., Tan, J., Deng, F., Analysis of genes differentially expressed during initial cellular dedifferentiation in cotton (2008) Chinese Science Bulletin, 3, pp. 3666-3676 | |
dc.description | Zhang, J., Ma, H., Chen, S., Ji, M., Perl, A., Kovacs, L., Stress response proteins' differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon-A proteomic approach (2009) Plant Science, 177, pp. 103-113 | |
dc.description | Harada, J.J., Role of arabidopsis LEAFY COTYLEDON genes in seed development (2001) Journal of Plant Physiology, 158 (4), pp. 405-409 | |
dc.description | Gaj, M.D., Zhang, S., Harada, J.J., Lemaux, P.G., Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis (2005) Planta, 222 (6), pp. 977-988. , DOI 10.1007/s00425-005-0041-y | |
dc.description | Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., Harada, J.J., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (20), pp. 11806-11811. , DOI 10.1073/pnas.201413498 | |
dc.relation | CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Molecular Overview On Plant Somatic Embryogenesis | |
dc.type | Artículos de revistas | |