dc.creatorNeto A.M.
dc.creatorVictorino A.C.
dc.creatorFantoni I.
dc.creatorFerreira J.V.
dc.date2013
dc.date2015-06-25T19:13:56Z
dc.date2015-11-26T15:11:44Z
dc.date2015-06-25T19:13:56Z
dc.date2015-11-26T15:11:44Z
dc.date.accessioned2018-03-28T22:21:50Z
dc.date.available2018-03-28T22:21:50Z
dc.identifier9781467327558
dc.identifierIeee Intelligent Vehicles Symposium, Proceedings. , v. , n. , p. 63 - 68, 2013.
dc.identifier
dc.identifier10.1109/IVS.2013.6629448
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84892411731&partnerID=40&md5=ac362084a08732f7f046f47704a70c88
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88993
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88993
dc.identifier2-s2.0-84892411731
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258214
dc.descriptionCamera-based estimation of drivable image areas is still in evolution. These systems have been developed for improved safety and convenience, without the need to adapt itself to the environment. Machine Vision is an important tool to identify the region that includes the road in images. Road detection is the major task of autonomous vehicle guidance. In this way, this work proposes a drivable region detection algorithm that generates the region of interest from a dynamic threshold search method and from a drag process (DP). Applying the DP to estimation of drivable image areas has not been done yet, making the concept unique. Our system was has been evaluated from real data obtained by intelligent platforms and tested in different types of image texture, which include occlusion case, obstacle detection and reactive navigation. © 2013 IEEE.
dc.description
dc.description
dc.description63
dc.description68
dc.descriptionAustralian Dedicated Short Range Communication (AusDSRC),Griffith University Intelligent Control Systems Laboratory,Intelligent Transport Systems Australia
dc.descriptionBonin-Font, F., Ortiz, A., Oliver, G., Visual navigation for mobile robots: A survey (2008) Journal of Intelligent and Robotic Systems, 53 (3), pp. 263-296
dc.descriptionRodríguez Flórez, S.A., (2010) Contributions by Vision Systems to Multi-sensor Object Localization and Tracking for Intelligent Vehicles, , Thesis, UTC, France
dc.descriptionThrun, S., Stanley, the robot that won the darpa grand challenge (2006) Journal of Robotic Systems, 23 (9), pp. 661-692. , 2006, ISSN: 0741-2223
dc.description(2007) Spirit of Berlin: An Autonomous Car for the DARPA Urban Challenge Hardware and Software Architecture, , retrieved Jan 05, 2010]
dc.descriptionGietelink, O., Ploeg, J., De Schutter, B., Verhaegen, M., Development of advanced driver assistance systems with vehicle hardware-in-The-loop simulations (2006) Vehicle System Dynamics, 44 (7)
dc.descriptionUlrich, I., Nourbakhsh, I., Appearance-based obstacle detection with monocular color vision (2000) Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 866-871
dc.descriptionKim, B., Hubbard, P., Necsulescu, D., (2003) Swarming Unmanned Aerial Vehicles: Concept Development and Experimentation, A State of the Art Review on Flight and Mission Control, , Technical Memorandum
dc.descriptionAviña-Cervantes, G., Devy, M., Marín, A., Lane extraction and tracking for robot navigation in agricultural applications (2003) Proceedings of the IEEE ICAR 2003
dc.descriptionDahlkamp, H., Self-supervised monocular road detection in desert terrain (2006) Proceedings of the Robotics Science and Systems Conference
dc.descriptionDiego, F., Álvarez, J.M., Serrat, J., López, A.M., Vision based road detection via on line video registration (2010) Proceedings of the IEEE ITSC 2010
dc.descriptionChetan, J., Madhava, K., Jawahar, C.V., An adaptive outdoor terrain classification methodology using monocular camera (2010) Proceedings of the IEEE IROS 2010
dc.descriptionYanqing, W., Deyun, C., Chaoxia, S., Peidong, W., Vision-based road detection by monte carlo method (2010) Information Technology Journal, 9, pp. 481-487
dc.descriptionYamaguchi, K., Watanabe, A., Naito, T., Ninomiya, Y., Road region estimation using a sequence of monocular images (2008) Proceedings of the International Conference on Pattern Recognition, 2008
dc.descriptionOtsu, N., A threshold selection method from graylevel histogram (1978) IEEE Transactions on Systems, Man, and Cybernetics, 9, pp. 62-66
dc.descriptionBertozzi Broggi, A.M., Fascioli, A., Vision-based intelligent vehicles: State of the art and perspectives (2000) Robotics and Autonomous Systems, 32, pp. 1-16
dc.descriptionMiranda Neto, A., Rittner, L., Leite, N., Zampieri, D.E., Lotufo, R., Mendeleck, A., Pearson's correlation coefficient for discarding redundant information in real time autonomous navigation systems (2007) Proceedings of the IEEE MSC 2007
dc.descriptionBenini, L., Bogliolo, A., Micheli, G.D., A survey of design techniques for system-level dynamic power management (2000) IEEE Transactions on Very Large Scale Integration Systems, 8 (3), pp. 299-316
dc.descriptionMiranda Neto, A., Victorino, A.C., Fantoni, I., Zampieri, D.E., Real-time dynamic power management based on pearson's correlation coefficient (2011) Proceedings of the IEEE ICAR 2011
dc.descriptionKing, H.L., Vision-based lane-vehicle detection and tracking (2009) IAENG Transactions on Engineering Technologies Volume 3-Special Edition, pp. 157-171. , American Institute of Physics
dc.descriptionEttinger, S., Vision-guided flight stability and control for micro air vehicles (2003) Adv. Robotics, pp. 617-640
dc.descriptionNeto, A.M., Victorino, A.C., Fantoni, I., Zampieri, D.E., Robust horizon finding algorithm for real-time autonomous navigation based on monocular vision (2011) Proceedings of the IEEE ITSC 2011
dc.descriptionMiranda Neto, A., Rittner, L., A simple and efficient road detection algorithm for real time autonomous navigation based on monocular vision (2006) Proceedings of the IEEE 3rd LARS 2006
dc.descriptionGonzalez, C.R., Woods, E.R., (1991) Digital Image Processing, , Addison-Wesley Publishing Company
dc.descriptionSahoo, P.K., Soltani, S., Wong, A.K.C., A survey of thresholding techniques (1988) Comput. Vision Graphics Image Processing, 41, pp. 233-260
dc.descriptionLee, U.S., Chung, Y.S., Park, H.R., A comparative performance study of several global thresholding techniques for segmentation (1990) Computer Vision, Graphics, and Image Processing
dc.descriptionSezgin, M., Sankur, B., Survey over image thresholding techniques and quantitative performance evaluation (2004) Journal of Electronic Imaging, 13, pp. 146-165
dc.descriptionRauskolb, F.W., Caroline: An autonomously driving vehicle for urban environments (2008) Journal of Field Robotics, 25 (9), pp. 674-724
dc.descriptionCanny, J.F., (1986) A Computational Approach to Edge Detection, , IEEE Trans. Pattern Anal. Machine Intell
dc.descriptionBallard, D., Generalized hough transform to detect arbitrary shapes (1981) IEEE Trans. Pattern Anal. Machine Intell, 13 (2), pp. 111-122
dc.descriptionWhite, F.M., (1986) Fluid Mechanics, , 2nd Ed. McGraw Hill
dc.descriptionDARPA 2005. DARPA Grand ChallengeNeto, A.M., Victorino, A.C., Fantoni, I., Zampieri, D.E., Ferreira, J.V., Visual-perception layer applied to reactive navigation (2012) Proceedings of the IEEE 9th LARS 2012
dc.descriptionhttp://youtu.be/ZpEbRo32pY8, retrieved Jan 31, 2013
dc.languageen
dc.publisher
dc.relationIEEE Intelligent Vehicles Symposium, Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleReal-time Estimation Of Drivable Image Area Based On Monocular Vision
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución