dc.creatorCuevas R.
dc.creatorDuran N.
dc.creatorDiez M.C.
dc.creatorTortella G.R.
dc.creatorRubilar O.
dc.date2015
dc.date2015-06-25T12:53:39Z
dc.date2015-11-26T15:11:17Z
dc.date2015-06-25T12:53:39Z
dc.date2015-11-26T15:11:17Z
dc.date.accessioned2018-03-28T22:21:22Z
dc.date.available2018-03-28T22:21:22Z
dc.identifier
dc.identifierJournal Of Nanomaterials. Hindawi Publishing Corporation, v. 2015, n. , p. - , 2015.
dc.identifier16874110
dc.identifier10.1155/2015/789089
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84924362983&partnerID=40&md5=a568b1d431cc9f0b88edde419d1b724a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85490
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85490
dc.identifier2-s2.0-84924362983
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258098
dc.descriptionThe white-rot fungus Stereum hirsutum was studied to evaluate its applicability for use in the biosynthesis of copper/copper oxide nanoparticles under different pH conditions and in the presence of three different copper salts (CuCl CuSO and Cu(NO. The nanoparticle formation was evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), and Fourier transforms infrared spectroscopy (FTIR). The nanoparticles biosynthesis in presence of all copper salts demonstrated higher formation with 5 mM CuClunder alkaline conditions. TEM analysis confirmed that the nanoparticles were mainly spherical (5 to 20 nm). The presence of amine groups attached to nanoparticles was confirmed by FTIR, which suggests that extracellular protein of fungus is responsible for the formation of the nanoparticles. Therefore, the white-rot fungus S. hirsutum was found to exhibit potential for use in the synthesis of copper/copper oxide nanoparticles.
dc.description2015
dc.description
dc.description
dc.description
dc.descriptionZhang, X., Yan, S., Tyagi, R.D., Surampalli, R.Y., Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates (2011) Chemosphere, 82 (4), pp. 489-494
dc.descriptionVigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M., Balasubramanya, R.H., Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus (2007) Materials Letters, 61 (6), pp. 1413-1418
dc.descriptionDurán, N., Marcato, P.D., Alves, O.L., De Souza, G.I.H., Esposito, E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains (2005) Journal of Nanobiotechnology, 3. , article 8
dc.descriptionAhmad, A., Mukherjee, P., Senapati, S., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum (2003) Colloids and Surfaces B: Biointerfaces, 28 (4), pp. 313-318
dc.descriptionDurán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) Journal of the Brazilian Chemical Society, 21 (6), pp. 949-959
dc.descriptionDurán, N., Marcato, P.D., Ingle, A., Gade, A., Ra, M., Fungi mediated synthesis of silver nanoparticles: Characterization processes and applications (2010) Progress in Mycology, pp. 425-449. , M. Rai and G. Kövics, Eds., chapter 342 Scientific Publishers, Jodhpur, India
dc.descriptionDurán, N., Marcato, P.D., Durán, M., Yadav, A., Gade, A., Rai, M., Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants (2011) Applied Microbiology and Biotechnology, 90 (5), pp. 1609-1624
dc.descriptionRaffi, M., Mehrwan, S., Bhatti, T.M., Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli (2010) Annals of Microbiology, 60 (1), pp. 75-80
dc.descriptionMikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., Nies, D.H., Survival of bacteria on metallic copper surfaces in a hospital trial (2010) Applied Microbiology and Biotechnology, 87 (5), pp. 1875-1879
dc.descriptionCady, N.C., Behnke, J.L., Strickland, A.D., Copper-based nanostructured coatings on natural cellulose: Nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. Baumannii, and mammalian cell biocompatibility in vitro (2011) Advanced Functional Materials, 21 (13), pp. 2506-2514
dc.descriptionChatterjee, A.K., Sarkar, R.K., Chattopadhyay, A.P., Aich, P., Chakraborty, R., Basu, T., A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. Coli (2012) Nanotechnology, 23 (8). , Article ID 085103
dc.descriptionDurán, N., Seabra, A.B., Metallic oxide nanoparticles: State of the art in biogenic syntheses and their mechanisms (2012) Applied Microbiology and Biotechnology, 95 (2), pp. 275-288
dc.descriptionLongano, D., Ditaranto, N., Sabbatini, L., Torsi, L., Cioffi, N., Synthesis and antimicrobial activity of copper nanomaterials (2012) Nano-Antimicrobials: Progress and Prospects, pp. 85-117. , N. Cioffi and M. Rai, Eds., chapter 3 Springer, New York, NY, USA
dc.descriptionGiannossa, L.C., Longano, D., Ditaranto, N., Metal nanoantimicrobials for textile applications (2013) Nanotechnology Reviews, 2 (3), pp. 307-331
dc.descriptionLee, H.J., Lee, G., Jang, N.R., Yun, J.H., Song, J.Y., Kim, B.S., Biological synthesis of copper nanoparticles using plant extract (2011) Nanotechnology, 1, pp. 371-374
dc.descriptionDurán, N., Marcato, P.D., Biotechnological routes to metallic nanoparticles production: Mechanistics aspects, antimicrobial activity, toxicity and industrial applications (2012) Nano- Antimicrobials: Progress and Prospects, pp. 337-374. , M. Rai and N. Cioffi, Eds., chapter 3 Springer, Berlin, Germany
dc.descriptionAbboud, Y., Saffaj, T., Chagraoui, A., Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata) (2014) Applied Nanoscience, 4, pp. 571-576
dc.descriptionRubilar, O., Rai, M., Tortella, G., Diez, M.C., Seabra, A.B., Durán, N., Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications (2013) Biotechnology Letters, 35 (9), pp. 1365-1375
dc.descriptionJia, B., Mei, Y., Cheng, L., Zhou, J., Zhang, L., Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction (2012) ACS Applied Materials and Interfaces, 4 (6), pp. 2897-2902
dc.descriptionBondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms andmammalian cells in vitro: A critical review (2013) Archives of Toxicology, 87 (7), pp. 1181-1200
dc.descriptionKanhed, P., Birla, S., Gaikwadet, S., Invitroantifungal efficacy of copper nanoparticles against selected crop pathogenic fungi (2014) Materials Letters, 115, pp. 13-17
dc.descriptionRai, M., Ingle, A., Gupta, I., Cytotoxicity and genotoxicity of copper nanoparticles (2014) Nanotoxicology: Materials, and Assessments, pp. 325-345. , N. Durán, S. S. Guterres, and O. L. Alves, Eds., chapter 15 Springer, Berlin, Germany
dc.descriptionMajumder, D.R., Bioremediation: Copper nanoparticles from electronic-waste (2012) International Journal of Engineering Science and Technology, 4 (10), pp. 4380-4389
dc.descriptionHonary, S., Barabadi, H., Gharaei-Fathabad, E., Naghibi, F., Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmani (2012) Digest Journal of Nanomaterials and Biostructures, 7 (3), pp. 999-1005
dc.descriptionHosseini, M.R., Schaffie, M., Pazouki, M., Darezereshki, E., Ranjbar, M., Biologically synthesized copper sulfide nanoparticles: Production and characterization (2012) Materials Science in Semiconductor Processing, 15 (2), pp. 222-225
dc.descriptionSanghi, R., Verma, P., Puri, S., Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium (2011) Advances in Chemical Engineering and Science, 1 (3), pp. 154-162
dc.descriptionNithya, R., Ragunathan, R., Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study (2009) Digest Journal of Nanomaterials and Biostructures, 4 (4), pp. 623-629
dc.descriptionSanghi, R., Verma, P., Biomimetic synthesis and characterisation of protein capped silver nanoparticles (2009) Bioresource Technology, 100 (1), pp. 501-504
dc.descriptionSanghi, R., Verma, P., A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus (2009) Chemical Engineering Journal, 155 (3), pp. 886-891
dc.descriptionChan, Y.S., Mashitah, M.D., Biosynthesis of silver nanoparticles from Schizophyllum commune and in-vitro antibacterial and antifungal activity studies (2013) Journal of Physical Science, 24 (2), pp. 83-96
dc.descriptionGuajardo-Pacheco, M.J., Morales-Sánchez, J.E., González- Hernández, J., Ruiz, F., Synthesis of copper nanoparticles using soybeans as a chelant agent (2010) Materials Letters, 64 (12), pp. 1361-1364
dc.descriptionGunalan, S., Sivaraj, R., Venckatesh, R., Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties (2012) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, pp. 1140-1144
dc.descriptionGopalakrishsnan, K., Ramesh, C., Ragunathan, V., Thamailselvan, M., Antibacterial activity of Cu2O nanoparticles on E. Coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline (2012) Digest Journal of Nanomaterials and Biostructures, 7 (2), pp. 833-839
dc.descriptionNoguez, C., Surface plasmons on metal nanoparticles: The influence of shape and physical environment (2007) The Journal of Physical Chemistry C, 111 (10), pp. 3606-3619
dc.descriptionSoomro, R.A., Synthesis of air stable copper nanoparticles and their use in catalysis (2014) Advanced Materials Letters, 5 (4), pp. 191-198
dc.descriptionLisiecki, I., Pileni, M.P., Copper metallic particles synthesized in situ in reverse micelles: Influence of various parameters on the size of the particles (1995) Journal of Physical Chemistry, 99 (14), pp. 5077-5082
dc.descriptionBanerjee, S., Chakravorty, D., Optical absorption by nanoparticles of Cu2O (2000) Europhysics Letters, 52 (4), pp. 468-473
dc.descriptionLee, H.-J., Song, J.Y., Kim, B.S., Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity (2013) Journal of Chemical Technology and Biotechnology, 88 (11), pp. 1971-1977
dc.descriptionMott, D., Luo, J., Smith, A., Njoki, P.N., Nanocrystal and surface alloy properties of bimetallic Gold- Platinum nanoparticles (2007) Nanoscale Research Letters, 2 (1), pp. 12-16
dc.descriptionPhuo, T.X., Chyu, M.K., Synthesis and characterization of nanocomposites using the nanoscale laser soldering in liquid technique (2013) Journal of Nanoscience and Nanotechnology, 1, p. 101
dc.descriptionGade, A., Gaikwad, S., Duran, N., Rai, M., Green synthesis of silver nanoparticles by Phoma glomerata (2014) Micron, 59, pp. 52-59
dc.descriptionBasavaraja, S., Balaji, S.D., Lagashetty, A., Rajasab, A.H., Venkataraman, A., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum (2008) Materials Research Bulletin, 43 (5), pp. 1164-1170
dc.descriptionShaligram, N.S., Bule, M., Bhambure, R., Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain (2009) Process Biochemistry, 44 (8), pp. 939-943
dc.descriptionPark, B.K., Jeong, S., Kim, D., Synthesis and size control of monodisperse copper nanoparticles by polyol method (2007) Journal of Colloid and Interface Science, 311 (2), pp. 417-424
dc.descriptionKooti, M., Matouri, L., Fabrication of nanosized cuprous oxide using fehlings solution (2010) Scientia Iranica, 17, pp. 73-78
dc.descriptionSrivastava, M., Singh, J., Mishra, R.K., Ojha, A.K., Electrooptical and magnetic properties of monodispersed colloidal Cu2O nanoparticles (2013) Journal of Alloys and Compounds, 555, pp. 123-130
dc.descriptionVolanti, D.P., Keyson, D., Cavalcante, L.S., Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave (2008) Journal of Alloys and Compounds, 459 (1-2), pp. 537-542
dc.descriptionCollins, D., Luxton, T., Kumar, N., Shah, S., Walker, V.K., Shah, V., Assessing the impact of copper and zinc oxide nanoparticles on soil: A field study (2012) PLoS ONE, 7 (8). , Article ID e42663
dc.descriptionKumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K., Characterization of cellulose nanocrystals produced by acidhydrolysis from sugarcane bagasse as agro-waste (2014) Journal of Materials Physics and Chemistry, 2 (1), pp. 1-8
dc.languageen
dc.publisherHindawi Publishing Corporation
dc.relationJournal of Nanomaterials
dc.rightsaberto
dc.sourceScopus
dc.titleExtracellular Biosynthesis Of Copper And Copper Oxide Nanoparticles By Stereum Hirsutum, A Native White-rot Fungus From Chilean Forests
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución