dc.creator | Contesini F.J. | |
dc.creator | Figueira J.A. | |
dc.creator | Kawaguti H.Y. | |
dc.creator | Fernandes P.C.B. | |
dc.creator | Carvalho P.O. | |
dc.creator | Nascimento M.G. | |
dc.creator | Sato H.H. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:13:32Z | |
dc.date | 2015-11-26T15:11:03Z | |
dc.date | 2015-06-25T19:13:32Z | |
dc.date | 2015-11-26T15:11:03Z | |
dc.date.accessioned | 2018-03-28T22:21:07Z | |
dc.date.available | 2018-03-28T22:21:07Z | |
dc.identifier | | |
dc.identifier | International Journal Of Molecular Sciences. , v. 14, n. 1, p. 1335 - 1369, 2013. | |
dc.identifier | | |
dc.identifier | 10.3390/ijms14011335 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84878662181&partnerID=40&md5=5fe26c6fb3a68083368e00fcc6b2df52 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/88880 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/88880 | |
dc.identifier | 2-s2.0-84878662181 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1258037 | |
dc.description | Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed. © 2013 by the authors; licensee MDPI, Basel, Switzerland. | |
dc.description | 14 | |
dc.description | 1 | |
dc.description | 1335 | |
dc.description | 1369 | |
dc.description | Simpson, B.K., Rui, X., Klomklao, S., Enzymes in Food Processing (2012) Food Biochemistry and Food Processing, pp. 181-206. , In 2nd ed. | |
dc.description | Simpson, B.K., Ed. | |
dc.description | Wiley-Blackwell: Oxford, UK | |
dc.description | Jana, M., Maity, C., Samanta, S., Pati, B.R., Islam, S.S., Mohapatra, P.K.D., Mondal, K.C., Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides (2013) Ind. Crop. Prod., 41, pp. 386-391 | |
dc.description | Akgöl, S., Kaçar, Y., Denizli, A., Arica, M.Y., Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres (2001) Food Chem., 74, pp. 281-288 | |
dc.description | Nakamura, T., Ogata, Y., Shitara, A., Nakamura, A., Ohta, K., Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817 (1995) J. Ferm. Bioeng., 80, pp. 164-169 | |
dc.description | Vasiljevic, T., Jelen, P., Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria (2001) Innov. Food Sci. Emerg., 2, pp. 75-85 | |
dc.description | Vera, C., Guerrero, C., Conejeros, R., Illanes, A., Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose (2012) Enzyme Microb. Technol., 50, pp. 188-194 | |
dc.description | Krisch, J., Bencsik, O., Papp, T., Vágvölgyi, C., Takó, M., Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete (2012) Rhizomucor miehei. Bioresour. Technol., 114, pp. 555-560 | |
dc.description | Kawaguti, H.Y., Sato, H.H., Palatinose production by free and Ca-alginate gel immobilized cells of Erwinia sp (2007) Biochem. Eng. J., 36, pp. 202-208 | |
dc.description | Tufvesson, P., Lima-Ramos, J., Nordblad, M., Woodley, J.M., Guidelines and cost analysis for catalyst production in biocatalytic processes (2010) Org. Process Res. Dev., 15, pp. 266-274 | |
dc.description | Dodge, T., Production of Industrial Enzymes (2009) Enzymes in Food Technology, pp. 44-58. , In 2nd ed. | |
dc.description | Amauri, A.B., Ed. | |
dc.description | Wiley-Blackwell: Hoboken, NJ, USA | |
dc.description | Wen, F., McLachlan, M., Zhao, H., Directed Evolution: Novel and Improved Enzymes (2008) Wiley Encyclopedia of Chemical Biology, pp. 1-10. , In John Wiley & Sons, Inc.: Hoboken, NJ, USA | |
dc.description | Martins, D.A.B., Prado, H.F.A., Leite, R.S.R., Ferreira, H., Moretti, M.M.S., Silva, R., Gomes, E., Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production (2011) Integrated Waste Management, 2, pp. 319-361. , Kumar, S., Ed. | |
dc.description | In Tech: Rijeka, Croatia | |
dc.description | Hanefeld, U., Gardossi, L., Magner, E., Understanding enzyme immobilisation (2009) Chem. Soc. Rev., 38, pp. 453-468 | |
dc.description | Torres-Salas, P., del Monte-Martinez, A., Cutiño-Avila, B., Rodriguez-Colinas, B., Alcalde, M., Ballesteros, A.O., Plou, F.J., Immobilized biocatalysts: Novel approaches and tools for binding enzymes to supports (2011) Adv. Mater., 23, pp. 5275-5282 | |
dc.description | Kahraman, M.V., Bayramoǧlu, G., Kayaman-Apohan, N., Güngör, A., α-Amylase immobilization on functionalized glass beads by covalent attachment (2007) Food Chem., 104, pp. 1385-1392 | |
dc.description | Silva, R.N., Asquieri, E.R., Fernandes, K.F., Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer (2005) Process Biochem., 40, pp. 1155-1159 | |
dc.description | Zhang, L., Zhu, X., Zheng, S., Sun, H., Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase (2009) Biochem. Eng. J., 46, pp. 83-87 | |
dc.description | Guiraud, J., Demeulle, S., Galzy, P., Inulin hydrolysis by the Debaryomyces phaffii inulinase immobilized on DEAE cellulose (1981) Biotechnol. Lett., 3, pp. 683-688 | |
dc.description | Tanriseven, A., Doǧan, S., Immobilization of invertase within calcium alginate gel capsules (2001) Process Biochem., 36, pp. 1081-1083 | |
dc.description | Neri, D.F.M., Balcão, V.M., Cunha, M.G.C., Carvalho Jr., L.B., Teixeira, J.A., Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane-polyvinyl alcohol magnetic (mPOS-PVA) composite for lactose hydrolysis (2008) Catal. Commun., 9, pp. 2334-2339 | |
dc.description | González-Pombo, P., Fariña, L., Carrau, F., Batista-Viera, F., Brena, B.M., A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine (2011) Process Biochem., 46, pp. 385-389 | |
dc.description | Li, T., Wang, N., Li, S., Zhao, Q., Guo, M., Zhang, C., Optimization of covalent immobilization of pectinase on sodium alginate support (2007) Biotechnol. Lett., 29, pp. 1413-1416 | |
dc.description | Tanriseven, A., Aslan, Y., Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides (2005) Enzyme Microb. Technol., 36, pp. 550-554 | |
dc.description | Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., Improvement of enzyme activity, stability and selectivity via immobilization techniques (2007) Enzyme Microb. Technol., 40, pp. 1451-1463 | |
dc.description | Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., Rodrigues, R.C., Potential of different enzyme immobilization strategies to improve enzyme performance (2011) Adv. Synth. Catal., 353, pp. 2885-2904 | |
dc.description | Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernandez-Lafuente, R., Modifying enzyme activity and selectivity by immobilization (2013) Chem. Soc. Rev., , doi:10.1039/C2CS35231A | |
dc.description | Iyer, P.V., Ananthanarayan, L., Enzyme stability and stabilization-Aqueous and non-aqueous environment (2008) Process Biochem., 43, pp. 1019-1032 | |
dc.description | Bes, M.T., Carlos-Moreno, C., Guisan, J.M., Fernandez-Lafuente, R., Gomez-Moreno, C., Selective oxidation: Stabilisation by multipoint attachment of ferredoxin NADP+ reductase, an interesting cofactor recycling enzyme (1995) J. Mol. Catal. A Chem., 98, pp. 161-169 | |
dc.description | Sheldon, R.A., Enzyme immobilization: The quest for optimum performance (2007) Adv. Synth. Catal., 349, pp. 1289-1307 | |
dc.description | Singh, A.K., Flounders, A.W., Volponi, J.V., Ashley, C.S., Wally, K., Schoeniger, J.S., Development of sensors for direct detection of organophosphates Part I immobilization characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports (1999) Biosens. Bioelectron., 14, pp. 703-713 | |
dc.description | Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., Inagaki, S., Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica (2000) Chem. Mater., 12, pp. 3301-3305 | |
dc.description | Hsu, A.-F., Foglia, T.A., Shen, S., Immobilization of Pseudomonas cepacia lipase in a phyllosilicate sol-gel matrix: Effectiveness as a biocatalyst (2000) Biotechnol. Appl. Biochem., 31, pp. 179-183 | |
dc.description | Betancor, L., Fuentes, M., Dellamora-Ortiz, G., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C., Fernández-Lafuente, R., Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles (2005) J. Mol. Catal. B Enzym., 32, pp. 97-101 | |
dc.description | Brady, D., Jordaan, J., Advances in enzyme immobilisation (2009) Biotechnol. Lett., 31, pp. 1639-1650 | |
dc.description | Fernandez-Lafuente, R., Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation (2009) Enzyme Microb. Technol., 45, pp. 405-418 | |
dc.description | Dib, I., Nidetzky, B., The stabilizing effects of immobilization in D-amino acid oxidase from (2008) Trigonopsis variabilis. BMC Biotechnol., 8, pp. 1-11 | |
dc.description | Bolivar, J.M., Mateo, C., Grazu, V., Carrascosa, A.V., Pessela, B.C., Guisan, J.M., Heterofunctional supports for the one-step purification, immobilization and stabilization of large multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports (2010) Process Biochem., 45, pp. 1692-1698 | |
dc.description | da Silva, V., Contesini, F., de Oliveira Carvalho, P., Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports (2009) J. Ind. Microbiol. Biotechnol., 36, pp. 949-954 | |
dc.description | Gómez de Segura, A., Alcalde, M., Plou, F.J., Remaud-simeon, M., Monsan, P., Ballesteros, A., Encapsulation in lentikats of dextransucrase from leuconostoc mesenteroides nrrl b-1299, and its effect on product selectivity (2003) Biocatal. Biotransform., 21, pp. 325-331 | |
dc.description | Guidini, C.Z., Fischer, J., Resende, M.M., Cardoso, V.L., Ribeiro, E.J., β-Galactosidase of Aspergillus oryzae immobilized in an ion exchange resin combining the ionic-binding and crosslinking methods: Kinetics and stability during the hydrolysis of lactose (2011) J. Mol. Catal. B Enzym., 71, pp. 139-145 | |
dc.description | Ray, R.R., Jana, S.C., Nanda, G., Biochemical approaches of increasing thermostability of β-amylase from Bacillus megaterium B6 (1994) FEBS Lett., 356, pp. 30-32 | |
dc.description | Mateo, C., Fernández-Lorente, G., Abian, O., Fernández-Lafuente, R., Guisán, J.M., Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage (2000) Biomacromolecules, 1, pp. 739-745 | |
dc.description | Mateo, C., Pessela, B.C., Grazu, V., López-Gallego, F., Torres, R., Fuentes, M., Hidalgo, A., Fernández-Lorente, G., (2006) Immobilization and stabilization of proteins by multipoint covalent attachment on novel amino-epoxy-sepabeads®., 22, pp. 153-162 | |
dc.description | Basso, A., Spizzo, P., Ferrario, V., Knapic, L., Savko, N., Braiuca, P., Ebert, C., Gardossi, L., Endo-and exo-inulinases: Enzyme-substrate interaction and rational immobilization (2010) Biotechnol. Prog., 26, pp. 397-405 | |
dc.description | Bolivar, J.M., Nidetzky, B., Positively charged mini-protein zbasic2 as a highly efficient silica binding module: Opportunities for enzyme immobilization on unmodified silica supports (2012) Langmuir, 28, pp. 10040-10049 | |
dc.description | Gopinath, S., Sugunan, S., Leaching studies over immobilized a-amylase. importance of the nature of enzyme attachment (2004) React. Kinet. Catal. Lett., 83, pp. 79-83 | |
dc.description | Ivanov, A.E., Schneider, M.P., Methods for the immobilization of lipases and their use for ester synthesis (1997) J. Mol. Catal. B Enzym., 3, pp. 303-309 | |
dc.description | Brena, B.M., Batista-Viera, F., Immobilization of Enzymes (2006) Methods in Biotechnology. Immobilization of Enzymes and Cells, pp. 15-30. , In Guisan, M.J., Ed. | |
dc.description | Humana Press Inc.: Totowa, NJ, USA | |
dc.description | Cao, L., Schmid, R.D., (2006) Carrier-bound Immobilized Enzymes: Principles, Application and Design., , Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany | |
dc.description | Torres, R., Mateo, C., Fernández-Lorente, G., Ortiz, C., Fuentes, M., Palomo, J.M., Guisan, J.M., Fernández-Lafuente, R., A novel heterofunctional epoxy-amino sepabeads for a new enzyme immobilization protocol: Immobilization-stabilization of β-galactosidase from (2003) Aspergillus oryzae. Biotechnol. Prog., 19, pp. 1056-1060 | |
dc.description | Hannibal-Friedrich, O., Chun, M., Sernetz, M., Immobilization of beta-galactosidase, albumin, and gamma-globulin on epoxy-activated acrylic beads (1980) Biotechnol. Bioeng., 22, pp. 157-175 | |
dc.description | Katchalski-Katzir, E., Kraemer, D.M., Eupergit® C, a carrier for immobilization of enzymes of industrial potential (2000) J. Mol. Catal. B Enzym., 10, pp. 157-176 | |
dc.description | Mateo, C., Grazú, V., Pessela, B.C., Montes, T., Palomo, J.M., Torres, R., López-Gallego, F., Guisán, J.M., Advances in the design of new epoxy supports for enzyme immobilization-stabilization (2007) Biochem. Soc. Trans., 35, pp. 1593-1601 | |
dc.description | Mateo, C., Abian, O., Fernández-Lorente, G., Pedroche, J., Fernández-Lafuente, R., Guisan, J.M., Tam, A., Daminati, M., Epoxy Sepabeads: A novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment (2002) Biotechnol. Prog., 18, pp. 629-634 | |
dc.description | Grazú, V., Abian, O., Mateo, C., Batista-Viera, F., Fernández-Lafuente, R., Guisán, J.M., Novel bifunctional epoxy/thiol-reactive support to immobilize thiol containing proteins by the epoxy chemistry (2003) Biomacromolecules, 4, pp. 1495-1501 | |
dc.description | Abian, O., Fernández-Lafuente, R., García, J.L., González García, R., Grazú, V., Guisán, J.M., Hermoso, J.A., Stabilization of penicillin G acylase from Escherichia coli: Site-directed mutagenesis of the protein surface to increase multipoint covalent attachment (2004) Appl. Environ. Microb., 70, pp. 1249-1251 | |
dc.description | Bolivar, J.M., López-Gallego, F., Godoy, C., Rodrigues, D.S., Rodrigues, R.C., Batalla, P., Rocha-Martín, J., Guisán, J.M., The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment (2009) Enzyme Microb. Technol., 45, pp. 477-483 | |
dc.description | Godoy, C.A., Rivas, B., Grazú, V., Montes, T., Guisán, J.M., López-Gallego, F., Glyoxyl-disulfide agarose: A tailor-made support for site-directed rigidification of proteins (2011) Biomacromolecules, 12, pp. 1800-1809 | |
dc.description | Hernandez, K., Fernandez-Lafuente, R., Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance (2011) Enzyme Microb. Technol., 48, pp. 107-122 | |
dc.description | Bernardino, S., Estrela, N., Ochoa-Mendes, V., Fernandes, P., Fonseca, L., Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties (2011) J. Sol-Gel Sci. Technol., 58, pp. 545-556 | |
dc.description | Pierre, A.C., The sol-gel encapsulation of enzymes (2004) Biocatal. Biotransform., 22, pp. 145-170 | |
dc.description | Shah, S., Sharma, A., Gupta, M.N., Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder (2006) Anal. Biochem., 351, pp. 207-213 | |
dc.description | Dong, T., Zhao, L., Huang, Y., Tan, X., Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive (2010) Bioresour. Technol., 101, pp. 6569-6571 | |
dc.description | Cabana, H., Jones, J.P., Agathos, S.N., Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals (2007) J. Biotechnol., 132, pp. 23-31 | |
dc.description | López-Gallego, F., Betancor, L., Hidalgo, A., Alonso, N., Fernández-Lafuente, R., Guisán, J.M., Co-aggregation of enzymes and polyethyleneimine: A simple method to prepare stable and immobilized derivatives of glutaryl acylase (2005) Biomacromolecules, 6, pp. 1839-1842 | |
dc.description | Wilson, L., Illanes, A., Abián, O., Pessela, B.C.C., Fernández-Lafuente, R., Guisán, J.M., Co-aggregation of penicillin G acylase and polyionic polymers: An easy methodology to prepare enzyme biocatalysts stable in organic media (2004) Biomacromolecules, 5, pp. 852-857 | |
dc.description | Wilson, L., Illanes, A., Abián, O., Fernández-Lafuente, R., Guisan, J.M., Encapsulation of very soft cross-linked enzyme aggregates (CLEAs) into very rigid LentiKats (2002) FAL Agric. Res., 241, pp. 121-125 | |
dc.description | Wilson, L., Illanes, A., Pessela, B.C., Abian, O., Fernández-Lafuente, R., Guisán, J.M., Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media (2004) Biotechnol. Bioeng., 86, pp. 558-562 | |
dc.description | Kim, J., Lee, J., Na, H.B., Kim, B.C., Youn, J.K., Kwak, J.H., Moon, K., Park, J., A Magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica (2005) Small, 1, pp. 1203-1207 | |
dc.description | Hobbs, L., Sweeteners from Starch: Production, Properties and Uses (2009) Starch, pp. 797-832. , In 3rd ed. | |
dc.description | James, B., Roy, W., Eds. | |
dc.description | Academic Press: San Diego, CA, USA | |
dc.description | Roy, I., Gupta, M.N., Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads (2004) Enzyme Microb. Technol., 34, pp. 26-32 | |
dc.description | Al-Mayah, A.M.R., Simulation of enzyme catalysis in calcium alginate beads (2012) Enzyme Res., , doi:10.1155/2012/459190 | |
dc.description | Ivanova, V., Dobreva, E., Legoy, M.D., Characteristics of immobilized thermostable amylases from two Bacillus licheniformis strains (1998) Acta Biotechnol., 18, pp. 339-351 | |
dc.description | Shewale, S.D., Pandit, A.B., Hydrolysis of soluble starch using Bacillus licheniformis α-amylase immobilized on superporous CELBEADS (2007) Carbohydr. Res., 342, pp. 997-1008 | |
dc.description | Singh, V., Kumar, P., Carboxymethyl tamarind gum-silica nanohybrids for effective immobilization of amylase (2011) J. Mol. Catal. B Enzym., 70, pp. 67-73 | |
dc.description | Tüzmen, N., Kalburcu, T., Denizli, A., Α-amylase immobilization onto dye attached magnetic beads: Optimization and characterization (2012) J. Mol. Catal. B Enzym., 78, pp. 16-23 | |
dc.description | Talekar, S., Chavare, S., Optimization of immobilization of α-amylase in alginate gel and its comparative biochemical studies with free α-amylase (2012) Rec. Res. Sci. Technol., 4, pp. 1-5 | |
dc.description | Carpio, C., Escobar, F., Batista-Viera, F., Ruales, J., Bone-bound glucoamylase as a biocatalyst in bench-scale production of glucose syrups from liquefied cassava starch (2011) Food Bioprocess Tech., 4, pp. 566-577 | |
dc.description | Zhao, G., Wang, J., Li, Y., Huang, H., Chen, X., Reversible immobilization of glucoamylase onto metal-ligand functionalized magnetic FeSBA-15 (2012) Biochem. Engin. J., 68, pp. 159-166 | |
dc.description | Singh, R.S., Saini, G.K., Kennedy, J.F., Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system (2010) Carbohydr. Polym., 81, pp. 252-259 | |
dc.description | Singh, R.S., Saini, G.K., Kennedy, J.F., Maltotriose syrup preparation from pullulan using pullulanase (2010) Carbohydr. Polym., 80, pp. 401-407 | |
dc.description | Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., Ladole, M., Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase (2012) Bioresour. Technol., 123, pp. 542-547 | |
dc.description | Emregul, E., Sungur, S., Akbulut, U., Polyacrylamide-gelatine carrier system used for invertase immobilization (2006) Food Chem., 97, pp. 591-597 | |
dc.description | Kotwal, S.M., Shankar, V., Immobilized invertase (2009) Biotechnol. Adv., 27, pp. 311-322 | |
dc.description | Cadena, P.G., Wiggers, F.N., Silva, R.A., Lima Filho, J.L., Pimentel, M.C.B., Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam (2011) Bioresour. Technol., 102, pp. 513-518 | |
dc.description | Smaali, I., Soussi, A., Bouallagui, H., Chaira, N., Hamdi, M., Marzouki, M.N., Production of high-fructose syrup from date by-products in a packed bed bioreactor using a novel thermostable invertase from (2011) Aspergillus awamori. Biocatal. Biotransform., 29, pp. 253-261 | |
dc.description | Albertini, A.V.P., Cadena, P.G., Silva, J.L., Nascimento, G.A., Reis, A.L.S., Freire, V.N., Santos, R.P., Neto, P.J.R., Performance of invertase immobilized on glass-ceramic supports in batch bioreactor (2012) Chem. Eng. J., 187, pp. 341-350 | |
dc.description | Albertini, A.V.P., Reis, A.L.S., Teles, F.R.R., Souza, J.C., Filho, J.L.R., Freire, V.N., Santos, R.P., Martins, D.B.G., The new flow system approach in packed bed reactor applicable for immobilized enzyme (2012) J. Mol. Catal. B Enzyme, 79, pp. 1-7 | |
dc.description | Mirzarakhmetova, D., Dekhkonov, D., Rakhimov, M., Abdurazakova, S., Akhmedova, Z., The properties of invertase, covalently immobilized at activated carbon (2009) Appl. Biochem. Microbiol., 45, pp. 258-261 | |
dc.description | Vujčić, Z., Milovanović, A., Božić, N., Dojnov, B., Vujčić, M., Andjelković, U., Lončar, N., Immobilization of cell wall invertase modified with glutaraldehyde for continuous production of invert sugar (2010) J. Agric. Food Chem., 58, pp. 11896-11900 | |
dc.description | Mohd Zain, N.A., Mohd Suardi, S., Idris, A., Hydrolysis of liquid pineapple waste by invertase immobilized in PVA-alginate matrix (2010) Biochem. Eng. J., 50, pp. 83-89 | |
dc.description | Talekar, S., Shah, V., Patil, S., Nimbalkar, M., Porous cross linked enzyme aggregates (p-CLEAs) of Saccharomyces cerevisiae invertase (2012) Catal. Sci. Technol., 2, pp. 1575-1579 | |
dc.description | Cho, Y.J., Sinha, J., Park, J.P., Yun, J.W., Production of inulooligosaccharides from inulin by a dual endoinulinase system (2001) Enzyme Microb. Technol., 29, pp. 428-433 | |
dc.description | Vandamme, E.J., Derycke, D.G., Microbial Inulinases: Fermentation Process, Properties, and Applications (1983) Advances in Applied Microbiology, 29, pp. 139-176. , In Allen, I.L., Ed. | |
dc.description | Academic Press: New York, NY, USA | |
dc.description | Ricca, E., Calabrò, V., Curcio, S., Iorio, G., The state of the art in the production of fructose from inulin enzymatic hydrolysis (2007) Crit. Rev. Biotechnol., 27, pp. 129-145 | |
dc.description | Santa, G., Bernardino, S., Magalhães, S., Mendes, V., Marques, M., Fonseca, L., Fernandes, P., From inulin to fructose syrups using sol-gel immobilized inulinase (2011) Appl. Biochem. Biotechnol., 165, pp. 1-12 | |
dc.description | Singh, R., Dhaliwal, R., Puri, M., Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1 (2007) J. Ind. Microbiol. Biotechnol., 34, pp. 649-655 | |
dc.description | Singh, R., Dhaliwal, R., Puri, M., Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin (2008) J. Ind. Microbiol. Biotechnol., 35, pp. 777-782 | |
dc.description | Ricca, E., Calabrò, V., Curcio, S., Basso, A., Gardossi, L., Iorio, G., Fructose production by inulinase covalently immobilized on sepabeads in batch and fluidized bed bioreactor (2010) Int. J. Mol. Sci., 11, pp. 1180-1189 | |
dc.description | de Paula, F.C., Cazetta, M.L., Monti, R., Contiero, J., Sucrose hydrolysis by gelatin-immobilized inulinase from Kluyveromyces marxianus var. bulgaricus (2008) Food Chem., 111, pp. 691-695 | |
dc.description | Ettalibi, M., Baratti, J.C., Sucrose hydrolysis by thermostable immobilized inulinases from (2001) Aspergillus ficuum. Enzyme Microb. Technol., 28, pp. 596-601 | |
dc.description | Barranco-Florido, E., García-Garibay, M., Gómez-Ruiz, L., Azaola, A., Immobilization system of Kluyveromyces marxianus cells in barium alginate for inulin hydrolysis (2001) Process Biochem., 37, pp. 513-519 | |
dc.description | Makino, Y., Lima, P.S.C., Filho, F.M., Rodrigues, M.I., Adsorption of the inulinase from Kluyveromyces marxianus NRRL Y-7571 on Streamline® DEAE resin (2005) Braz. J. Chem. Eng., 22, pp. 539-545 | |
dc.description | Nguyen, Q.D., Rezessy-Szabó, J.M., Czukor, B., Hoschke, A., Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase (2011) Process Biochem., 46, pp. 298-303 | |
dc.description | Yun, J.W., Park, J.P., Song, C.H., Lee, C.Y., Kim, J.H., Song, S.K., Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase (2000) Bioprocess Eng., 22, pp. 189-194 | |
dc.description | Spagna, G., Pifferi, P.G., Tramontini, M., Immobilization and stabilization of pectinlyase on synthetic polymers for application in the beverage industry (1995) J. Mol. Catal. A Chem., 101, pp. 99-105 | |
dc.description | Wilson, B., Strauss, C.R., Williams, P.J., The distribution of free and glycosidically-bound monoterpenes among skin, juice, and pulp fractions of some white grape varieties (1986) Am. J. Enol. Vitic., 37, pp. 107-111 | |
dc.description | Voirin, S.G., Baumes, R.L., Bitteur, S.M., Gunata, Z.Y., Bayonove, C.L., Novel monoterpene disaccharide glycosides of Vitis vinifera grapes (1990) J. Agric. Food Chem., 38, pp. 1373-1378 | |
dc.description | Gueguen, Y., Chemardin, P., Janbon, G., Arnaud, A., Galzy, P., A very efficient beta-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices (1996) J. Agric. Food Chem., 44, pp. 2336-2340 | |
dc.description | Spagna, G., Barbagallo, R.N., Greco, E., Manenti, I., Pifferi, P.G., A mixture of purified glycosidases from Aspergillus niger for oenological application immobilised by inclusion in chitosan gels (2002) Enzyme Microb. Technol., 30, pp. 80-89 | |
dc.description | Su, E., Xia, T., Gao, L., Dai, Q., Zhang, Z., Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage (2010) Food Bioprod. Process., 88, pp. 83-89 | |
dc.description | Figueira, J.A., Dias, F.F.G., Sato, H.H., Fernandes, P., Screening of supports for the immobilization β-glucosidase (2011) Enzyme Res., 2011, p. 8 | |
dc.description | Whitaker, J.R., New and future uses of enzymes in food processing (1990) Food Biotechnol., 4, pp. 669-697 | |
dc.description | Alaña, A., Gabilondo, A., Hernando, F., Moragues, M.D., Dominguez, J.B., Llama, M.J., Serra, J.L., Pectin lyase production by a penicillium italicum strain (1989) Appl. Environ. Microbiol., 55, pp. 1612-1616 | |
dc.description | Lanzarini, G., Pifferi, P.G., Enzymes in the Fruit Juice Industry (1989) Biotechnology Applications in Beverage Production, , Cantarelli, C., Ed. | |
dc.description | Elsevier Applied Science: New York, NY, USA | |
dc.description | Alkorta, I., Garbisu, C., María, Llama, J., Serra, J.L., Immobilization of pectin lyase from Penicillium italicum by covalent binding to nylon (1996) Enzyme Microb. Technol., 18, pp. 141-146 | |
dc.description | Torres, D.P.M., Gonçalves, M.P.F., Teixeira, J.A., Rodrigues, L.R., Galacto-Oligosaccharides: Production, properties, applications, and significance as prebiotics (2010) Compr. Rev. Food Sci. Food Saf., 9, pp. 438-454 | |
dc.description | Panesar, P.S., Kumari, S., Panesar, R., Potential applications of immobilized β-galactosidase in food processing industries (2010) Enzyme Res., 2010, pp. 1-16 | |
dc.description | Boon, M.A., Janssen, A.E.M., van't Riet, K., Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides (2000) Enzyme Microb. Technol., 26, pp. 271-281 | |
dc.description | Boon, M.A., Janssen, A.E.M., van der Padt, A., Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by β-galactosidase from (1999) Bacillus circulans. Biotechnol. Bioeng., 64, pp. 558-567 | |
dc.description | Neri, D.F.M., Balcão, V.M., Costa, R.S., Rocha, I.C.A.P., Ferreira, E.M.F.C., Torres, D.P.M., Rodrigues, L.R.M., Teixeira, J.A., Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol (2009) Food Chem., 115, pp. 92-99 | |
dc.description | Vera, C., Guerrero, C., Illanes, A., Conejeros, R., A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from (2011) Aspergillus oryzae. Biotechnol. Bioeng., 108, pp. 2270-2279 | |
dc.description | Gosling, A., Stevens, G.W., Barber, A.R., Kentish, S.E., Gras, S.L., Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of β-galactosidase from (2011) Bacillus circulans. J. Agric. Food Chem., 59, pp. 3366-3372 | |
dc.description | Gaur, R., Pant, H., Jain, R., Khare, S.K., Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase (2006) Food Chem., 97, pp. 426-430 | |
dc.description | Shin, H.-J., Park, J.-M., Yang, J.-W., Continuous production of galacto-oligosaccharides from lactose by Bullera singularis β-galactosidase immobilized in chitosan beads (1998) Process Biochem., 33, pp. 787-792 | |
dc.description | Neri, D.F.M., Balcão, V.M., Dourado, F.O.Q., Oliveira, J.M.B., Carvalho Jr., L.B., Teixeira, J.A., Immobilized β-galactosidase onto magnetic particles coated with polyaniline: Support characterization and galactooligosaccharides production (2011) J. Mol. Catal. B Enzyme, 70, pp. 74-80 | |
dc.description | Liu, H., Liu, J., Tan, B., Zhou, F., Qin, Y., Yang, R., Covalent immobilization of Kluyveromyces fragilis β-galactosidase on magnetic nanosized epoxy support for synthesis of galacto-oligosaccharide (2012) Bioprocess Biosyst. Eng., 35, pp. 1287-1295 | |
dc.description | Albayrak, N., Yang, S.-T., Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose (2002) Biotechnol. Prog., 18, pp. 240-251 | |
dc.description | Güleç, H., Gürdaş, S., Albayrak, N., Mutlu, M., Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide (2010) Biotechnol. Bioprocess Eng., 15, pp. 1006-1015 | |
dc.description | Nakkharat, P., Haltrich, D., β-Galactosidase from Talaromyces thermophilus immobilized on to Eupergit C for production of galacto-oligosaccharides during lactose hydrolysis in batch and packed-bed reactor (2007) World J. Microbiol. Biotechnol., 23, pp. 759-764 | |
dc.description | Zheng, P., Yu, H., Sun, Z., Ni, Y., Zhang, W., Fan, Y., Xu, Y., Production of galacto-oligosaccharides by immobilized recombinant β-galactosidase from Aspergillus candidus (2006) Biotechnol. J., 1, pp. 1464-1470 | |
dc.description | Albayrak, N., Yang, S.-T., Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth (2002) Biotechnol. Bioeng., 77, pp. 8-19 | |
dc.description | Mozaffar, Z., Nakanishi, K., Matsuno, R., Mechanism for reversible inactivation of immobilized β-galactosidase from Bacillus circulans during continuous production of galactooligosaccharides (1986) Appl. Microbiol. Biotechnol., 25, pp. 229-231 | |
dc.description | Nakkharat, P., Kulbe, K.D., Yamabhai, M., Haltrich, D., Formation of galacto-oligosaccharides during lactose hydrolysis by a novel β-galactosidase from the moderately thermophilic fungus (2006) Talaromyces thermophilus. Biotechnol. J., 1, pp. 633-638 | |
dc.description | Maiorano, A., Piccoli, R., da Silva, E., de Andrade Rodrigues, M., Microbial production of fructosyltransferases for synthesis of pre-biotics (2008) Biotechnol. Lett., 30, pp. 1867-1877 | |
dc.description | Alvarado-Huallanco, M.B., Maugeri Filho, F., Kinetic studies and modelling of the production of fructooligosaccharides by fructosyltransferase from Rhodotorula sp (2011) Catal. Sci. Technol., 1, pp. 1043-1050 | |
dc.description | Sánchez, O., Rodriguez, A., Silva, E., Caicedo, L., Sucrose biotransformation to fructooligosaccharides by Aspergillus sp. N74 free cells (2010) Food Bioprocess Tech., 3, pp. 662-673 | |
dc.description | Vaňková, K., Onderková, Z., Antošová, M., Polakovič, M., Design and economics of industrial production of fructooligosaccharides (2008) Chem. Pap., 62, pp. 375-381 | |
dc.description | Ning, Y., Wang, J., Chen, J., Yang, N., Jin, Z., Xu, X., Production of neo-fructooligosaccharides using free-whole-cell biotransformation by Xanthophyllomyces dendrorhous (2010) Bioresour. Technol., 101, pp. 7472-7478 | |
dc.description | Cruz, R., Cruz, V.D., Belini, M.Z., Belote, J.G., Vieira, C.R., Production of fructooligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate (1998) Bioresour. Technol., 65, pp. 139-143 | |
dc.description | Jung, K.H., Bang, S.H., Oh, T.K., Park, H.J., Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor (2011) Biotechnol. Lett., 33, pp. 1621-1624 | |
dc.description | Shin, H.T., Park, K.M., Kang, K.H., Oh, D.J., Lee, S.W., Baig, S.Y., Lee, J.H., Novel method for cell immobilization and its application for production of oligosaccharides from sucrose (2004) Lett. Appl. Microbiol., 38, pp. 176-179 | |
dc.description | Smaali, I., Jazzar, S., Soussi, A., Muzard, M., Aubry, N., Marzouki, M., Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033 (2012) Biotechnol. Bioprocess Eng., 17, pp. 385-392 | |
dc.description | Kovaleva, T., Holyavka, M., Bogdanova, S., Inulinase immobilization on macroporous anion-exchange resins by different methods (2009) Bull. Exp. Biol. Med., 148, pp. 39-41 | |
dc.description | Ghazi, I., Segura, A.G.D., Fernández-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M.L., Plou, F.J., Ballesteros, A., Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides (2005) J. Mol. Catal. B Enzyme, 35, pp. 19-27 | |
dc.description | Alvarado-Huallanco, M.B., Maugeri-Filho, F., Kinetics and modeling of fructooligosaccharide synthesis by immobilized fructosyltransferase from (2010) Rhodotorula sp. J. Chem. Technol. Biotechnol., 85, pp. 1654-1662 | |
dc.description | Husain, Q., β Galactosidases and their potential applications: A review (2010) Crit. Rev. Biotechnol., 30, pp. 41-62 | |
dc.description | Guidini, C.Z., Fischer, J., Santana, L.N.S., Cardoso, V.L., Ribeiro, E.J., Immobilization of Aspergillus oryzae β-galactosidase in ion exchange resins by combined ionic-binding method and cross-linking (2010) Biochem. Eng. J., 52, pp. 137-143 | |
dc.description | Pessela, B.C.C., Fernandez-Lafuente, R., Fuentes, M., Vian, A., Garca, J.L., Carrascosa, A.V., Mateo, C., Guisan, J.M., Reversible immobilization of a thermophilic beta-galactosidase via ionic adsorption on PEI-coated Sepabeads (2003) Enzyme Microb. Technol., 32, pp. 369-374 | |
dc.description | Pessela, B.C.C., Mateo, C., Fuentes, M., Vian, A., García, J.L., Carrascosa, A.V., Guisán, J.M., Fernández-Lafuente, R., The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products (2003) Enzyme Microb. Technol., 33, pp. 199-205 | |
dc.description | Mateo, C., Monti, R., Pessela, B.C.C., Fuentes, M., Torres, R., Manuel Guisán, J., Fernández-Lafuente, R., Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk (2004) Biotechnol. Prog., 20, pp. 1259-1262 | |
dc.description | Tanriseven, A., Doǧan, S., A novel method for the immobilization of β-galactosidase (2002) Process Biochem., 38, pp. 27-30 | |
dc.description | Jochems, P., Satyawali, Y., van Roy, S., Doyen, W., Diels, L., Dejonghe, W., Characterization and optimization of β-galactosidase immobilization process on a mixed-matrix membrane (2011) Enzyme Microb. Technol., 49, pp. 580-588 | |
dc.description | Takazoe, G., Palatinose-An Isomeric Alternative to Sucrose (1989) Progress in Sweeteners, pp. 143-167. , In Grenby, T.H., Ed., Elsevier: London, UK | |
dc.description | Sasaki, N., Topitsoglou, V., Takazoe, I., Frostell, G., Cariogenicity of isomaltulose (palatinose), sucrose and mixture of these sugars in rats infected with Streptococcus mutans E-49 (1985) Swed. Dent. J., 9, pp. | |
dc.publisher | | |
dc.relation | International Journal of Molecular Sciences | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Potential Applications Of Carbohydrases Immobilization In The Food Industry | |
dc.type | Artículos de revistas | |