dc.creatorContesini F.J.
dc.creatorFigueira J.A.
dc.creatorKawaguti H.Y.
dc.creatorFernandes P.C.B.
dc.creatorCarvalho P.O.
dc.creatorNascimento M.G.
dc.creatorSato H.H.
dc.date2013
dc.date2015-06-25T19:13:32Z
dc.date2015-11-26T15:11:03Z
dc.date2015-06-25T19:13:32Z
dc.date2015-11-26T15:11:03Z
dc.date.accessioned2018-03-28T22:21:07Z
dc.date.available2018-03-28T22:21:07Z
dc.identifier
dc.identifierInternational Journal Of Molecular Sciences. , v. 14, n. 1, p. 1335 - 1369, 2013.
dc.identifier
dc.identifier10.3390/ijms14011335
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84878662181&partnerID=40&md5=5fe26c6fb3a68083368e00fcc6b2df52
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88880
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88880
dc.identifier2-s2.0-84878662181
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258037
dc.descriptionCarbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
dc.description14
dc.description1
dc.description1335
dc.description1369
dc.descriptionSimpson, B.K., Rui, X., Klomklao, S., Enzymes in Food Processing (2012) Food Biochemistry and Food Processing, pp. 181-206. , In 2nd ed.
dc.descriptionSimpson, B.K., Ed.
dc.descriptionWiley-Blackwell: Oxford, UK
dc.descriptionJana, M., Maity, C., Samanta, S., Pati, B.R., Islam, S.S., Mohapatra, P.K.D., Mondal, K.C., Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides (2013) Ind. Crop. Prod., 41, pp. 386-391
dc.descriptionAkgöl, S., Kaçar, Y., Denizli, A., Arica, M.Y., Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres (2001) Food Chem., 74, pp. 281-288
dc.descriptionNakamura, T., Ogata, Y., Shitara, A., Nakamura, A., Ohta, K., Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817 (1995) J. Ferm. Bioeng., 80, pp. 164-169
dc.descriptionVasiljevic, T., Jelen, P., Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria (2001) Innov. Food Sci. Emerg., 2, pp. 75-85
dc.descriptionVera, C., Guerrero, C., Conejeros, R., Illanes, A., Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose (2012) Enzyme Microb. Technol., 50, pp. 188-194
dc.descriptionKrisch, J., Bencsik, O., Papp, T., Vágvölgyi, C., Takó, M., Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete (2012) Rhizomucor miehei. Bioresour. Technol., 114, pp. 555-560
dc.descriptionKawaguti, H.Y., Sato, H.H., Palatinose production by free and Ca-alginate gel immobilized cells of Erwinia sp (2007) Biochem. Eng. J., 36, pp. 202-208
dc.descriptionTufvesson, P., Lima-Ramos, J., Nordblad, M., Woodley, J.M., Guidelines and cost analysis for catalyst production in biocatalytic processes (2010) Org. Process Res. Dev., 15, pp. 266-274
dc.descriptionDodge, T., Production of Industrial Enzymes (2009) Enzymes in Food Technology, pp. 44-58. , In 2nd ed.
dc.descriptionAmauri, A.B., Ed.
dc.descriptionWiley-Blackwell: Hoboken, NJ, USA
dc.descriptionWen, F., McLachlan, M., Zhao, H., Directed Evolution: Novel and Improved Enzymes (2008) Wiley Encyclopedia of Chemical Biology, pp. 1-10. , In John Wiley & Sons, Inc.: Hoboken, NJ, USA
dc.descriptionMartins, D.A.B., Prado, H.F.A., Leite, R.S.R., Ferreira, H., Moretti, M.M.S., Silva, R., Gomes, E., Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production (2011) Integrated Waste Management, 2, pp. 319-361. , Kumar, S., Ed.
dc.descriptionIn Tech: Rijeka, Croatia
dc.descriptionHanefeld, U., Gardossi, L., Magner, E., Understanding enzyme immobilisation (2009) Chem. Soc. Rev., 38, pp. 453-468
dc.descriptionTorres-Salas, P., del Monte-Martinez, A., Cutiño-Avila, B., Rodriguez-Colinas, B., Alcalde, M., Ballesteros, A.O., Plou, F.J., Immobilized biocatalysts: Novel approaches and tools for binding enzymes to supports (2011) Adv. Mater., 23, pp. 5275-5282
dc.descriptionKahraman, M.V., Bayramoǧlu, G., Kayaman-Apohan, N., Güngör, A., α-Amylase immobilization on functionalized glass beads by covalent attachment (2007) Food Chem., 104, pp. 1385-1392
dc.descriptionSilva, R.N., Asquieri, E.R., Fernandes, K.F., Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer (2005) Process Biochem., 40, pp. 1155-1159
dc.descriptionZhang, L., Zhu, X., Zheng, S., Sun, H., Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase (2009) Biochem. Eng. J., 46, pp. 83-87
dc.descriptionGuiraud, J., Demeulle, S., Galzy, P., Inulin hydrolysis by the Debaryomyces phaffii inulinase immobilized on DEAE cellulose (1981) Biotechnol. Lett., 3, pp. 683-688
dc.descriptionTanriseven, A., Doǧan, S., Immobilization of invertase within calcium alginate gel capsules (2001) Process Biochem., 36, pp. 1081-1083
dc.descriptionNeri, D.F.M., Balcão, V.M., Cunha, M.G.C., Carvalho Jr., L.B., Teixeira, J.A., Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane-polyvinyl alcohol magnetic (mPOS-PVA) composite for lactose hydrolysis (2008) Catal. Commun., 9, pp. 2334-2339
dc.descriptionGonzález-Pombo, P., Fariña, L., Carrau, F., Batista-Viera, F., Brena, B.M., A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine (2011) Process Biochem., 46, pp. 385-389
dc.descriptionLi, T., Wang, N., Li, S., Zhao, Q., Guo, M., Zhang, C., Optimization of covalent immobilization of pectinase on sodium alginate support (2007) Biotechnol. Lett., 29, pp. 1413-1416
dc.descriptionTanriseven, A., Aslan, Y., Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides (2005) Enzyme Microb. Technol., 36, pp. 550-554
dc.descriptionMateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., Improvement of enzyme activity, stability and selectivity via immobilization techniques (2007) Enzyme Microb. Technol., 40, pp. 1451-1463
dc.descriptionGarcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., Rodrigues, R.C., Potential of different enzyme immobilization strategies to improve enzyme performance (2011) Adv. Synth. Catal., 353, pp. 2885-2904
dc.descriptionRodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernandez-Lafuente, R., Modifying enzyme activity and selectivity by immobilization (2013) Chem. Soc. Rev., , doi:10.1039/C2CS35231A
dc.descriptionIyer, P.V., Ananthanarayan, L., Enzyme stability and stabilization-Aqueous and non-aqueous environment (2008) Process Biochem., 43, pp. 1019-1032
dc.descriptionBes, M.T., Carlos-Moreno, C., Guisan, J.M., Fernandez-Lafuente, R., Gomez-Moreno, C., Selective oxidation: Stabilisation by multipoint attachment of ferredoxin NADP+ reductase, an interesting cofactor recycling enzyme (1995) J. Mol. Catal. A Chem., 98, pp. 161-169
dc.descriptionSheldon, R.A., Enzyme immobilization: The quest for optimum performance (2007) Adv. Synth. Catal., 349, pp. 1289-1307
dc.descriptionSingh, A.K., Flounders, A.W., Volponi, J.V., Ashley, C.S., Wally, K., Schoeniger, J.S., Development of sensors for direct detection of organophosphates Part I immobilization characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports (1999) Biosens. Bioelectron., 14, pp. 703-713
dc.descriptionTakahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., Inagaki, S., Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica (2000) Chem. Mater., 12, pp. 3301-3305
dc.descriptionHsu, A.-F., Foglia, T.A., Shen, S., Immobilization of Pseudomonas cepacia lipase in a phyllosilicate sol-gel matrix: Effectiveness as a biocatalyst (2000) Biotechnol. Appl. Biochem., 31, pp. 179-183
dc.descriptionBetancor, L., Fuentes, M., Dellamora-Ortiz, G., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C., Fernández-Lafuente, R., Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles (2005) J. Mol. Catal. B Enzym., 32, pp. 97-101
dc.descriptionBrady, D., Jordaan, J., Advances in enzyme immobilisation (2009) Biotechnol. Lett., 31, pp. 1639-1650
dc.descriptionFernandez-Lafuente, R., Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation (2009) Enzyme Microb. Technol., 45, pp. 405-418
dc.descriptionDib, I., Nidetzky, B., The stabilizing effects of immobilization in D-amino acid oxidase from (2008) Trigonopsis variabilis. BMC Biotechnol., 8, pp. 1-11
dc.descriptionBolivar, J.M., Mateo, C., Grazu, V., Carrascosa, A.V., Pessela, B.C., Guisan, J.M., Heterofunctional supports for the one-step purification, immobilization and stabilization of large multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports (2010) Process Biochem., 45, pp. 1692-1698
dc.descriptionda Silva, V., Contesini, F., de Oliveira Carvalho, P., Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports (2009) J. Ind. Microbiol. Biotechnol., 36, pp. 949-954
dc.descriptionGómez de Segura, A., Alcalde, M., Plou, F.J., Remaud-simeon, M., Monsan, P., Ballesteros, A., Encapsulation in lentikats of dextransucrase from leuconostoc mesenteroides nrrl b-1299, and its effect on product selectivity (2003) Biocatal. Biotransform., 21, pp. 325-331
dc.descriptionGuidini, C.Z., Fischer, J., Resende, M.M., Cardoso, V.L., Ribeiro, E.J., β-Galactosidase of Aspergillus oryzae immobilized in an ion exchange resin combining the ionic-binding and crosslinking methods: Kinetics and stability during the hydrolysis of lactose (2011) J. Mol. Catal. B Enzym., 71, pp. 139-145
dc.descriptionRay, R.R., Jana, S.C., Nanda, G., Biochemical approaches of increasing thermostability of β-amylase from Bacillus megaterium B6 (1994) FEBS Lett., 356, pp. 30-32
dc.descriptionMateo, C., Fernández-Lorente, G., Abian, O., Fernández-Lafuente, R., Guisán, J.M., Multifunctional epoxy supports: A new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage (2000) Biomacromolecules, 1, pp. 739-745
dc.descriptionMateo, C., Pessela, B.C., Grazu, V., López-Gallego, F., Torres, R., Fuentes, M., Hidalgo, A., Fernández-Lorente, G., (2006) Immobilization and stabilization of proteins by multipoint covalent attachment on novel amino-epoxy-sepabeads®., 22, pp. 153-162
dc.descriptionBasso, A., Spizzo, P., Ferrario, V., Knapic, L., Savko, N., Braiuca, P., Ebert, C., Gardossi, L., Endo-and exo-inulinases: Enzyme-substrate interaction and rational immobilization (2010) Biotechnol. Prog., 26, pp. 397-405
dc.descriptionBolivar, J.M., Nidetzky, B., Positively charged mini-protein zbasic2 as a highly efficient silica binding module: Opportunities for enzyme immobilization on unmodified silica supports (2012) Langmuir, 28, pp. 10040-10049
dc.descriptionGopinath, S., Sugunan, S., Leaching studies over immobilized a-amylase. importance of the nature of enzyme attachment (2004) React. Kinet. Catal. Lett., 83, pp. 79-83
dc.descriptionIvanov, A.E., Schneider, M.P., Methods for the immobilization of lipases and their use for ester synthesis (1997) J. Mol. Catal. B Enzym., 3, pp. 303-309
dc.descriptionBrena, B.M., Batista-Viera, F., Immobilization of Enzymes (2006) Methods in Biotechnology. Immobilization of Enzymes and Cells, pp. 15-30. , In Guisan, M.J., Ed.
dc.descriptionHumana Press Inc.: Totowa, NJ, USA
dc.descriptionCao, L., Schmid, R.D., (2006) Carrier-bound Immobilized Enzymes: Principles, Application and Design., , Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
dc.descriptionTorres, R., Mateo, C., Fernández-Lorente, G., Ortiz, C., Fuentes, M., Palomo, J.M., Guisan, J.M., Fernández-Lafuente, R., A novel heterofunctional epoxy-amino sepabeads for a new enzyme immobilization protocol: Immobilization-stabilization of β-galactosidase from (2003) Aspergillus oryzae. Biotechnol. Prog., 19, pp. 1056-1060
dc.descriptionHannibal-Friedrich, O., Chun, M., Sernetz, M., Immobilization of beta-galactosidase, albumin, and gamma-globulin on epoxy-activated acrylic beads (1980) Biotechnol. Bioeng., 22, pp. 157-175
dc.descriptionKatchalski-Katzir, E., Kraemer, D.M., Eupergit® C, a carrier for immobilization of enzymes of industrial potential (2000) J. Mol. Catal. B Enzym., 10, pp. 157-176
dc.descriptionMateo, C., Grazú, V., Pessela, B.C., Montes, T., Palomo, J.M., Torres, R., López-Gallego, F., Guisán, J.M., Advances in the design of new epoxy supports for enzyme immobilization-stabilization (2007) Biochem. Soc. Trans., 35, pp. 1593-1601
dc.descriptionMateo, C., Abian, O., Fernández-Lorente, G., Pedroche, J., Fernández-Lafuente, R., Guisan, J.M., Tam, A., Daminati, M., Epoxy Sepabeads: A novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment (2002) Biotechnol. Prog., 18, pp. 629-634
dc.descriptionGrazú, V., Abian, O., Mateo, C., Batista-Viera, F., Fernández-Lafuente, R., Guisán, J.M., Novel bifunctional epoxy/thiol-reactive support to immobilize thiol containing proteins by the epoxy chemistry (2003) Biomacromolecules, 4, pp. 1495-1501
dc.descriptionAbian, O., Fernández-Lafuente, R., García, J.L., González García, R., Grazú, V., Guisán, J.M., Hermoso, J.A., Stabilization of penicillin G acylase from Escherichia coli: Site-directed mutagenesis of the protein surface to increase multipoint covalent attachment (2004) Appl. Environ. Microb., 70, pp. 1249-1251
dc.descriptionBolivar, J.M., López-Gallego, F., Godoy, C., Rodrigues, D.S., Rodrigues, R.C., Batalla, P., Rocha-Martín, J., Guisán, J.M., The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment (2009) Enzyme Microb. Technol., 45, pp. 477-483
dc.descriptionGodoy, C.A., Rivas, B., Grazú, V., Montes, T., Guisán, J.M., López-Gallego, F., Glyoxyl-disulfide agarose: A tailor-made support for site-directed rigidification of proteins (2011) Biomacromolecules, 12, pp. 1800-1809
dc.descriptionHernandez, K., Fernandez-Lafuente, R., Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance (2011) Enzyme Microb. Technol., 48, pp. 107-122
dc.descriptionBernardino, S., Estrela, N., Ochoa-Mendes, V., Fernandes, P., Fonseca, L., Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties (2011) J. Sol-Gel Sci. Technol., 58, pp. 545-556
dc.descriptionPierre, A.C., The sol-gel encapsulation of enzymes (2004) Biocatal. Biotransform., 22, pp. 145-170
dc.descriptionShah, S., Sharma, A., Gupta, M.N., Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder (2006) Anal. Biochem., 351, pp. 207-213
dc.descriptionDong, T., Zhao, L., Huang, Y., Tan, X., Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive (2010) Bioresour. Technol., 101, pp. 6569-6571
dc.descriptionCabana, H., Jones, J.P., Agathos, S.N., Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals (2007) J. Biotechnol., 132, pp. 23-31
dc.descriptionLópez-Gallego, F., Betancor, L., Hidalgo, A., Alonso, N., Fernández-Lafuente, R., Guisán, J.M., Co-aggregation of enzymes and polyethyleneimine: A simple method to prepare stable and immobilized derivatives of glutaryl acylase (2005) Biomacromolecules, 6, pp. 1839-1842
dc.descriptionWilson, L., Illanes, A., Abián, O., Pessela, B.C.C., Fernández-Lafuente, R., Guisán, J.M., Co-aggregation of penicillin G acylase and polyionic polymers: An easy methodology to prepare enzyme biocatalysts stable in organic media (2004) Biomacromolecules, 5, pp. 852-857
dc.descriptionWilson, L., Illanes, A., Abián, O., Fernández-Lafuente, R., Guisan, J.M., Encapsulation of very soft cross-linked enzyme aggregates (CLEAs) into very rigid LentiKats (2002) FAL Agric. Res., 241, pp. 121-125
dc.descriptionWilson, L., Illanes, A., Pessela, B.C., Abian, O., Fernández-Lafuente, R., Guisán, J.M., Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media (2004) Biotechnol. Bioeng., 86, pp. 558-562
dc.descriptionKim, J., Lee, J., Na, H.B., Kim, B.C., Youn, J.K., Kwak, J.H., Moon, K., Park, J., A Magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica (2005) Small, 1, pp. 1203-1207
dc.descriptionHobbs, L., Sweeteners from Starch: Production, Properties and Uses (2009) Starch, pp. 797-832. , In 3rd ed.
dc.descriptionJames, B., Roy, W., Eds.
dc.descriptionAcademic Press: San Diego, CA, USA
dc.descriptionRoy, I., Gupta, M.N., Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads (2004) Enzyme Microb. Technol., 34, pp. 26-32
dc.descriptionAl-Mayah, A.M.R., Simulation of enzyme catalysis in calcium alginate beads (2012) Enzyme Res., , doi:10.1155/2012/459190
dc.descriptionIvanova, V., Dobreva, E., Legoy, M.D., Characteristics of immobilized thermostable amylases from two Bacillus licheniformis strains (1998) Acta Biotechnol., 18, pp. 339-351
dc.descriptionShewale, S.D., Pandit, A.B., Hydrolysis of soluble starch using Bacillus licheniformis α-amylase immobilized on superporous CELBEADS (2007) Carbohydr. Res., 342, pp. 997-1008
dc.descriptionSingh, V., Kumar, P., Carboxymethyl tamarind gum-silica nanohybrids for effective immobilization of amylase (2011) J. Mol. Catal. B Enzym., 70, pp. 67-73
dc.descriptionTüzmen, N., Kalburcu, T., Denizli, A., Α-amylase immobilization onto dye attached magnetic beads: Optimization and characterization (2012) J. Mol. Catal. B Enzym., 78, pp. 16-23
dc.descriptionTalekar, S., Chavare, S., Optimization of immobilization of α-amylase in alginate gel and its comparative biochemical studies with free α-amylase (2012) Rec. Res. Sci. Technol., 4, pp. 1-5
dc.descriptionCarpio, C., Escobar, F., Batista-Viera, F., Ruales, J., Bone-bound glucoamylase as a biocatalyst in bench-scale production of glucose syrups from liquefied cassava starch (2011) Food Bioprocess Tech., 4, pp. 566-577
dc.descriptionZhao, G., Wang, J., Li, Y., Huang, H., Chen, X., Reversible immobilization of glucoamylase onto metal-ligand functionalized magnetic FeSBA-15 (2012) Biochem. Engin. J., 68, pp. 159-166
dc.descriptionSingh, R.S., Saini, G.K., Kennedy, J.F., Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system (2010) Carbohydr. Polym., 81, pp. 252-259
dc.descriptionSingh, R.S., Saini, G.K., Kennedy, J.F., Maltotriose syrup preparation from pullulan using pullulanase (2010) Carbohydr. Polym., 80, pp. 401-407
dc.descriptionTalekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., Ladole, M., Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase (2012) Bioresour. Technol., 123, pp. 542-547
dc.descriptionEmregul, E., Sungur, S., Akbulut, U., Polyacrylamide-gelatine carrier system used for invertase immobilization (2006) Food Chem., 97, pp. 591-597
dc.descriptionKotwal, S.M., Shankar, V., Immobilized invertase (2009) Biotechnol. Adv., 27, pp. 311-322
dc.descriptionCadena, P.G., Wiggers, F.N., Silva, R.A., Lima Filho, J.L., Pimentel, M.C.B., Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam (2011) Bioresour. Technol., 102, pp. 513-518
dc.descriptionSmaali, I., Soussi, A., Bouallagui, H., Chaira, N., Hamdi, M., Marzouki, M.N., Production of high-fructose syrup from date by-products in a packed bed bioreactor using a novel thermostable invertase from (2011) Aspergillus awamori. Biocatal. Biotransform., 29, pp. 253-261
dc.descriptionAlbertini, A.V.P., Cadena, P.G., Silva, J.L., Nascimento, G.A., Reis, A.L.S., Freire, V.N., Santos, R.P., Neto, P.J.R., Performance of invertase immobilized on glass-ceramic supports in batch bioreactor (2012) Chem. Eng. J., 187, pp. 341-350
dc.descriptionAlbertini, A.V.P., Reis, A.L.S., Teles, F.R.R., Souza, J.C., Filho, J.L.R., Freire, V.N., Santos, R.P., Martins, D.B.G., The new flow system approach in packed bed reactor applicable for immobilized enzyme (2012) J. Mol. Catal. B Enzyme, 79, pp. 1-7
dc.descriptionMirzarakhmetova, D., Dekhkonov, D., Rakhimov, M., Abdurazakova, S., Akhmedova, Z., The properties of invertase, covalently immobilized at activated carbon (2009) Appl. Biochem. Microbiol., 45, pp. 258-261
dc.descriptionVujčić, Z., Milovanović, A., Božić, N., Dojnov, B., Vujčić, M., Andjelković, U., Lončar, N., Immobilization of cell wall invertase modified with glutaraldehyde for continuous production of invert sugar (2010) J. Agric. Food Chem., 58, pp. 11896-11900
dc.descriptionMohd Zain, N.A., Mohd Suardi, S., Idris, A., Hydrolysis of liquid pineapple waste by invertase immobilized in PVA-alginate matrix (2010) Biochem. Eng. J., 50, pp. 83-89
dc.descriptionTalekar, S., Shah, V., Patil, S., Nimbalkar, M., Porous cross linked enzyme aggregates (p-CLEAs) of Saccharomyces cerevisiae invertase (2012) Catal. Sci. Technol., 2, pp. 1575-1579
dc.descriptionCho, Y.J., Sinha, J., Park, J.P., Yun, J.W., Production of inulooligosaccharides from inulin by a dual endoinulinase system (2001) Enzyme Microb. Technol., 29, pp. 428-433
dc.descriptionVandamme, E.J., Derycke, D.G., Microbial Inulinases: Fermentation Process, Properties, and Applications (1983) Advances in Applied Microbiology, 29, pp. 139-176. , In Allen, I.L., Ed.
dc.descriptionAcademic Press: New York, NY, USA
dc.descriptionRicca, E., Calabrò, V., Curcio, S., Iorio, G., The state of the art in the production of fructose from inulin enzymatic hydrolysis (2007) Crit. Rev. Biotechnol., 27, pp. 129-145
dc.descriptionSanta, G., Bernardino, S., Magalhães, S., Mendes, V., Marques, M., Fonseca, L., Fernandes, P., From inulin to fructose syrups using sol-gel immobilized inulinase (2011) Appl. Biochem. Biotechnol., 165, pp. 1-12
dc.descriptionSingh, R., Dhaliwal, R., Puri, M., Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1 (2007) J. Ind. Microbiol. Biotechnol., 34, pp. 649-655
dc.descriptionSingh, R., Dhaliwal, R., Puri, M., Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin (2008) J. Ind. Microbiol. Biotechnol., 35, pp. 777-782
dc.descriptionRicca, E., Calabrò, V., Curcio, S., Basso, A., Gardossi, L., Iorio, G., Fructose production by inulinase covalently immobilized on sepabeads in batch and fluidized bed bioreactor (2010) Int. J. Mol. Sci., 11, pp. 1180-1189
dc.descriptionde Paula, F.C., Cazetta, M.L., Monti, R., Contiero, J., Sucrose hydrolysis by gelatin-immobilized inulinase from Kluyveromyces marxianus var. bulgaricus (2008) Food Chem., 111, pp. 691-695
dc.descriptionEttalibi, M., Baratti, J.C., Sucrose hydrolysis by thermostable immobilized inulinases from (2001) Aspergillus ficuum. Enzyme Microb. Technol., 28, pp. 596-601
dc.descriptionBarranco-Florido, E., García-Garibay, M., Gómez-Ruiz, L., Azaola, A., Immobilization system of Kluyveromyces marxianus cells in barium alginate for inulin hydrolysis (2001) Process Biochem., 37, pp. 513-519
dc.descriptionMakino, Y., Lima, P.S.C., Filho, F.M., Rodrigues, M.I., Adsorption of the inulinase from Kluyveromyces marxianus NRRL Y-7571 on Streamline® DEAE resin (2005) Braz. J. Chem. Eng., 22, pp. 539-545
dc.descriptionNguyen, Q.D., Rezessy-Szabó, J.M., Czukor, B., Hoschke, A., Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase (2011) Process Biochem., 46, pp. 298-303
dc.descriptionYun, J.W., Park, J.P., Song, C.H., Lee, C.Y., Kim, J.H., Song, S.K., Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase (2000) Bioprocess Eng., 22, pp. 189-194
dc.descriptionSpagna, G., Pifferi, P.G., Tramontini, M., Immobilization and stabilization of pectinlyase on synthetic polymers for application in the beverage industry (1995) J. Mol. Catal. A Chem., 101, pp. 99-105
dc.descriptionWilson, B., Strauss, C.R., Williams, P.J., The distribution of free and glycosidically-bound monoterpenes among skin, juice, and pulp fractions of some white grape varieties (1986) Am. J. Enol. Vitic., 37, pp. 107-111
dc.descriptionVoirin, S.G., Baumes, R.L., Bitteur, S.M., Gunata, Z.Y., Bayonove, C.L., Novel monoterpene disaccharide glycosides of Vitis vinifera grapes (1990) J. Agric. Food Chem., 38, pp. 1373-1378
dc.descriptionGueguen, Y., Chemardin, P., Janbon, G., Arnaud, A., Galzy, P., A very efficient beta-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices (1996) J. Agric. Food Chem., 44, pp. 2336-2340
dc.descriptionSpagna, G., Barbagallo, R.N., Greco, E., Manenti, I., Pifferi, P.G., A mixture of purified glycosidases from Aspergillus niger for oenological application immobilised by inclusion in chitosan gels (2002) Enzyme Microb. Technol., 30, pp. 80-89
dc.descriptionSu, E., Xia, T., Gao, L., Dai, Q., Zhang, Z., Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage (2010) Food Bioprod. Process., 88, pp. 83-89
dc.descriptionFigueira, J.A., Dias, F.F.G., Sato, H.H., Fernandes, P., Screening of supports for the immobilization β-glucosidase (2011) Enzyme Res., 2011, p. 8
dc.descriptionWhitaker, J.R., New and future uses of enzymes in food processing (1990) Food Biotechnol., 4, pp. 669-697
dc.descriptionAlaña, A., Gabilondo, A., Hernando, F., Moragues, M.D., Dominguez, J.B., Llama, M.J., Serra, J.L., Pectin lyase production by a penicillium italicum strain (1989) Appl. Environ. Microbiol., 55, pp. 1612-1616
dc.descriptionLanzarini, G., Pifferi, P.G., Enzymes in the Fruit Juice Industry (1989) Biotechnology Applications in Beverage Production, , Cantarelli, C., Ed.
dc.descriptionElsevier Applied Science: New York, NY, USA
dc.descriptionAlkorta, I., Garbisu, C., María, Llama, J., Serra, J.L., Immobilization of pectin lyase from Penicillium italicum by covalent binding to nylon (1996) Enzyme Microb. Technol., 18, pp. 141-146
dc.descriptionTorres, D.P.M., Gonçalves, M.P.F., Teixeira, J.A., Rodrigues, L.R., Galacto-Oligosaccharides: Production, properties, applications, and significance as prebiotics (2010) Compr. Rev. Food Sci. Food Saf., 9, pp. 438-454
dc.descriptionPanesar, P.S., Kumari, S., Panesar, R., Potential applications of immobilized β-galactosidase in food processing industries (2010) Enzyme Res., 2010, pp. 1-16
dc.descriptionBoon, M.A., Janssen, A.E.M., van't Riet, K., Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides (2000) Enzyme Microb. Technol., 26, pp. 271-281
dc.descriptionBoon, M.A., Janssen, A.E.M., van der Padt, A., Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by β-galactosidase from (1999) Bacillus circulans. Biotechnol. Bioeng., 64, pp. 558-567
dc.descriptionNeri, D.F.M., Balcão, V.M., Costa, R.S., Rocha, I.C.A.P., Ferreira, E.M.F.C., Torres, D.P.M., Rodrigues, L.R.M., Teixeira, J.A., Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol (2009) Food Chem., 115, pp. 92-99
dc.descriptionVera, C., Guerrero, C., Illanes, A., Conejeros, R., A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from (2011) Aspergillus oryzae. Biotechnol. Bioeng., 108, pp. 2270-2279
dc.descriptionGosling, A., Stevens, G.W., Barber, A.R., Kentish, S.E., Gras, S.L., Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of β-galactosidase from (2011) Bacillus circulans. J. Agric. Food Chem., 59, pp. 3366-3372
dc.descriptionGaur, R., Pant, H., Jain, R., Khare, S.K., Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase (2006) Food Chem., 97, pp. 426-430
dc.descriptionShin, H.-J., Park, J.-M., Yang, J.-W., Continuous production of galacto-oligosaccharides from lactose by Bullera singularis β-galactosidase immobilized in chitosan beads (1998) Process Biochem., 33, pp. 787-792
dc.descriptionNeri, D.F.M., Balcão, V.M., Dourado, F.O.Q., Oliveira, J.M.B., Carvalho Jr., L.B., Teixeira, J.A., Immobilized β-galactosidase onto magnetic particles coated with polyaniline: Support characterization and galactooligosaccharides production (2011) J. Mol. Catal. B Enzyme, 70, pp. 74-80
dc.descriptionLiu, H., Liu, J., Tan, B., Zhou, F., Qin, Y., Yang, R., Covalent immobilization of Kluyveromyces fragilis β-galactosidase on magnetic nanosized epoxy support for synthesis of galacto-oligosaccharide (2012) Bioprocess Biosyst. Eng., 35, pp. 1287-1295
dc.descriptionAlbayrak, N., Yang, S.-T., Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose (2002) Biotechnol. Prog., 18, pp. 240-251
dc.descriptionGüleç, H., Gürdaş, S., Albayrak, N., Mutlu, M., Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide (2010) Biotechnol. Bioprocess Eng., 15, pp. 1006-1015
dc.descriptionNakkharat, P., Haltrich, D., β-Galactosidase from Talaromyces thermophilus immobilized on to Eupergit C for production of galacto-oligosaccharides during lactose hydrolysis in batch and packed-bed reactor (2007) World J. Microbiol. Biotechnol., 23, pp. 759-764
dc.descriptionZheng, P., Yu, H., Sun, Z., Ni, Y., Zhang, W., Fan, Y., Xu, Y., Production of galacto-oligosaccharides by immobilized recombinant β-galactosidase from Aspergillus candidus (2006) Biotechnol. J., 1, pp. 1464-1470
dc.descriptionAlbayrak, N., Yang, S.-T., Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth (2002) Biotechnol. Bioeng., 77, pp. 8-19
dc.descriptionMozaffar, Z., Nakanishi, K., Matsuno, R., Mechanism for reversible inactivation of immobilized β-galactosidase from Bacillus circulans during continuous production of galactooligosaccharides (1986) Appl. Microbiol. Biotechnol., 25, pp. 229-231
dc.descriptionNakkharat, P., Kulbe, K.D., Yamabhai, M., Haltrich, D., Formation of galacto-oligosaccharides during lactose hydrolysis by a novel β-galactosidase from the moderately thermophilic fungus (2006) Talaromyces thermophilus. Biotechnol. J., 1, pp. 633-638
dc.descriptionMaiorano, A., Piccoli, R., da Silva, E., de Andrade Rodrigues, M., Microbial production of fructosyltransferases for synthesis of pre-biotics (2008) Biotechnol. Lett., 30, pp. 1867-1877
dc.descriptionAlvarado-Huallanco, M.B., Maugeri Filho, F., Kinetic studies and modelling of the production of fructooligosaccharides by fructosyltransferase from Rhodotorula sp (2011) Catal. Sci. Technol., 1, pp. 1043-1050
dc.descriptionSánchez, O., Rodriguez, A., Silva, E., Caicedo, L., Sucrose biotransformation to fructooligosaccharides by Aspergillus sp. N74 free cells (2010) Food Bioprocess Tech., 3, pp. 662-673
dc.descriptionVaňková, K., Onderková, Z., Antošová, M., Polakovič, M., Design and economics of industrial production of fructooligosaccharides (2008) Chem. Pap., 62, pp. 375-381
dc.descriptionNing, Y., Wang, J., Chen, J., Yang, N., Jin, Z., Xu, X., Production of neo-fructooligosaccharides using free-whole-cell biotransformation by Xanthophyllomyces dendrorhous (2010) Bioresour. Technol., 101, pp. 7472-7478
dc.descriptionCruz, R., Cruz, V.D., Belini, M.Z., Belote, J.G., Vieira, C.R., Production of fructooligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate (1998) Bioresour. Technol., 65, pp. 139-143
dc.descriptionJung, K.H., Bang, S.H., Oh, T.K., Park, H.J., Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor (2011) Biotechnol. Lett., 33, pp. 1621-1624
dc.descriptionShin, H.T., Park, K.M., Kang, K.H., Oh, D.J., Lee, S.W., Baig, S.Y., Lee, J.H., Novel method for cell immobilization and its application for production of oligosaccharides from sucrose (2004) Lett. Appl. Microbiol., 38, pp. 176-179
dc.descriptionSmaali, I., Jazzar, S., Soussi, A., Muzard, M., Aubry, N., Marzouki, M., Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033 (2012) Biotechnol. Bioprocess Eng., 17, pp. 385-392
dc.descriptionKovaleva, T., Holyavka, M., Bogdanova, S., Inulinase immobilization on macroporous anion-exchange resins by different methods (2009) Bull. Exp. Biol. Med., 148, pp. 39-41
dc.descriptionGhazi, I., Segura, A.G.D., Fernández-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M.L., Plou, F.J., Ballesteros, A., Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides (2005) J. Mol. Catal. B Enzyme, 35, pp. 19-27
dc.descriptionAlvarado-Huallanco, M.B., Maugeri-Filho, F., Kinetics and modeling of fructooligosaccharide synthesis by immobilized fructosyltransferase from (2010) Rhodotorula sp. J. Chem. Technol. Biotechnol., 85, pp. 1654-1662
dc.descriptionHusain, Q., β Galactosidases and their potential applications: A review (2010) Crit. Rev. Biotechnol., 30, pp. 41-62
dc.descriptionGuidini, C.Z., Fischer, J., Santana, L.N.S., Cardoso, V.L., Ribeiro, E.J., Immobilization of Aspergillus oryzae β-galactosidase in ion exchange resins by combined ionic-binding method and cross-linking (2010) Biochem. Eng. J., 52, pp. 137-143
dc.descriptionPessela, B.C.C., Fernandez-Lafuente, R., Fuentes, M., Vian, A., Garca, J.L., Carrascosa, A.V., Mateo, C., Guisan, J.M., Reversible immobilization of a thermophilic beta-galactosidase via ionic adsorption on PEI-coated Sepabeads (2003) Enzyme Microb. Technol., 32, pp. 369-374
dc.descriptionPessela, B.C.C., Mateo, C., Fuentes, M., Vian, A., García, J.L., Carrascosa, A.V., Guisán, J.M., Fernández-Lafuente, R., The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products (2003) Enzyme Microb. Technol., 33, pp. 199-205
dc.descriptionMateo, C., Monti, R., Pessela, B.C.C., Fuentes, M., Torres, R., Manuel Guisán, J., Fernández-Lafuente, R., Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk (2004) Biotechnol. Prog., 20, pp. 1259-1262
dc.descriptionTanriseven, A., Doǧan, S., A novel method for the immobilization of β-galactosidase (2002) Process Biochem., 38, pp. 27-30
dc.descriptionJochems, P., Satyawali, Y., van Roy, S., Doyen, W., Diels, L., Dejonghe, W., Characterization and optimization of β-galactosidase immobilization process on a mixed-matrix membrane (2011) Enzyme Microb. Technol., 49, pp. 580-588
dc.descriptionTakazoe, G., Palatinose-An Isomeric Alternative to Sucrose (1989) Progress in Sweeteners, pp. 143-167. , In Grenby, T.H., Ed., Elsevier: London, UK
dc.descriptionSasaki, N., Topitsoglou, V., Takazoe, I., Frostell, G., Cariogenicity of isomaltulose (palatinose), sucrose and mixture of these sugars in rats infected with Streptococcus mutans E-49 (1985) Swed. Dent. J., 9, pp.
dc.publisher
dc.relationInternational Journal of Molecular Sciences
dc.rightsfechado
dc.sourceScopus
dc.titlePotential Applications Of Carbohydrases Immobilization In The Food Industry
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución