Artículos de revistas
Deriving Vegetation Indices For Phenology Analysis Using Genetic Programming
Registro en:
Ecological Informatics. Elsevier, v. 26, n. P3, p. 61 - 69, 2015.
15749541
10.1016/j.ecoinf.2015.01.003
2-s2.0-84922719400
Autor
Almeida J.
dos Santos J.A.
Miranda W.O.
Alberton B.
Morellato L.P.C.
da S. Torres R.
Institución
Resumen
Plant phenology studies recurrent plant life cycle events and is a key component for understanding the impact of climate change. To increase accuracy of observations, new technologies have been applied for phenological observation, and one of the most successful strategies relies on the use of digital cameras, which are used as multi-channel imaging sensors to estimate color changes that are related to phenological events. We monitor leaf-changing patterns of a cerrado-savanna vegetation by taking daily digital images. We extract individual plant color information and correlate with leaf phenological changes. For that, several vegetation indices associated with plant species are exploited for both pattern analysis and knowledge extraction. In this paper, we present a novel approach for deriving appropriate vegetation indices from vegetation digital images. The proposed method is based on learning phenological patterns from plant species through a genetic programming framework. A comparative analysis of different vegetation indices is conducted and discussed. Experimental results show that our approach presents higher accuracy on characterizing plant species phenology. 26 P3 61 69 Ahrends, H., Etzold, S., Kutsch, W., Stoeckli, R., Bruegger, R., Jeanneret, F., Wanner, H., Eugster, W., Tree phenology and carbon dioxide fluxes: use of digital photography for process-based interpretation at the ecosystem scale (2009) Clim. Res., 39, pp. 261-274 Alberton, B., Almeida, J., Henneken, R., da S.Torres, R., Menzel, A., Morellato, L.P.C., Using phenological cameras to track the green up in a cerrado savanna and its on-the-ground validation (2014) Ecol. Inform., 19, pp. 62-70 Almeida, J., dos Santos, J.A., Alberton, B., da S.Torres, R., Morellato, L.P.C., Remote phenology: applying machine learning to detect phenological patterns in a cerrado savanna (2012) IEEE International Conference on eScience (eScience'12), pp. 1-8 Almeida, J., dos Santos, J.A., Alberton, B., Morellato, L.P.C., da S.Torres, R., Plant species identification with phenological visual rhythms (2013) IEEE International Conference on eScience (eScience'13), pp. 148-154 Almeida, J., dos Santos, J.A., Alberton, B., Morellato, L.P.C., da S.Torres, R., Visual rhythm-based time series analysis for phenology studies (2013) IEEE International Conference on Image Processing (ICIP'13), pp. 4412-4416 Almeida, J., dos Santos, J.A., Alberton, B., da S.Torres, R., Morellato, L.P.C., Applying machine learning based on multiscale classifiers to detect remote phenology patterns in cerrado savanna trees (2014) Ecol. Inform., 23, pp. 49-61 Andrade, F.S.P., Almeida, J., Pedrini, H., da S.Torres, R., Fusion of local and global descriptors for content-based image and video retrieval (2012) Iberoamerican Congress on, Pattern Recognition (CIARP'12), pp. 845-853 Baeza-Yates, R.A., Ribeiro-Neto, B.A., (1999) Modern Information Retrieval, , Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA Bimbo, A., (1999) Visual Information Retrieval, , Morgan Kaufmann Publishers Inc., San Francisco, CA, USA Calumby, R.T., da S.Torres, R., Gonçalves, M.A., Multimodal retrieval with relevance feedback based on genetic programming (2014) Multimed. Tools Appl., 69 (3), pp. 991-1019 Conti, J.C., Faria, F.A., Almeida, J., Alberton, B., Morellato, L.P.C., Camolesi, L., da S.Torres, R., Evaluation of time series distance functions in the task of detecting remote phenology patterns (2014) IEEE International Conference on Pattern Recognition (ICPR'14), pp. 1-6 da S.Torres, R., Falcão, A.X., Gonçalves, M.A., Papa, J.P., Zhang, B., Fan, W., Fox, E.A., A genetic programming framework for content-based image retrieval (2009) Pattern Recogn., 42 (2), pp. 283-292 Davis, J., Goadrich, M., The relationship between precision-recall and roc curves (2006) ACM International Conference on, Machine Learning (ICML'06), pp. 233-240 Fan, W., Fox, E.A., Pathak, P., Wu, H., The effects of fitness functions on genetic programming-based ranking discovery forweb search (2004) J. Am. Soc. Inf. Sci. Technol., 55 (7), pp. 628-636 Faria, F.A., Veloso, A., Almeida, H.M., Valle, E., da S.Torres, R., Gonçalves, M.A., Meira, W., Learning to rank for content-based image retrieval (2010) ACM International Conference on Multimedia Information Retrieval (MIR'10), pp. 285-294 Ferreira, C.D., dos Santos, J.A., da S.Torres, R., Gonçalves, M.A., Rezende, R.C., Fan, W., Relevance feedback based on genetic programming for image retrieval (2011) Pattern Recogn. Lett., 32 (1), pp. 27-37 Fishburn, P.C., (1988) Nonlinear Preference and Utility Theory, , Johns Hopkins University Press Gillespie, A.R., Kahle, A.B., Walker, R.E., Color enhancement of highly correlated images. II. Channel ratio and "chromaticity" transformation techniques (1987) Remote Sens. Environ., 22 (3), pp. 343-365 Gonzalez, R.C., Woods, R.E., (2007) Digital Image Processing, , Prentice-Hall Inc., Upper Saddle River, NJ, USA Guigues, L., Cocquerez, J., Le Men, H., Scale-sets image analysis (2006) Int. J. Comput. Vis., 68, pp. 289-317 Henneken, R., Dose, V., Schleip, C., Menzel, A., Detecting plant seasonality from webcams using bayesian multiple change point analysis (2013) Agric. For. Meteorol., 168, pp. 177-185 Ide, R., Oguma, H., Use of digital cameras for phenological observations (2010) Ecol. Inform., 5 (5), pp. 339-347 Ide, R., Oguma, H., A cost-effective monitoring method using digital time-lapse cameras for detecting temporal and spatial variations of snowmelt and vegetation phenology in alpine ecosystems (2013) Ecol. Inform., 16, pp. 25-34 Koza, J.R., (1992) Genetic Programming: on the Programming of Computers by Means of Natural Selection, , MIT Press Kurc, S., Benton, L., Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland (2010) J. Arid Environ., 74, pp. 585-594 Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., Sonnentag, O., Cogliati, S., Richardson, A.D., Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic co2 uptake (2011) Agric. For. Meteorol., 151 (10), pp. 1325-1337 Morellato, L.P.C., Rodrigues, R.R., Leitão Filho, H.F., Joly, C.A., Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesófila semidecídua na Serra do Iapí, Jundiaí, São Paulo (1989) Braz. J. Bot., 12, pp. 85-98 Morellato, L.P.C., Camargo, M.G.G., Gressler, E., A review of plant phenology in south and central america (2013) Phenology: An Integrative Environmental Science, pp. 91-113. , Springer, (chapter 6), M.D. Schwartz (Ed.) Morisette, J.T., Richardson, A.D., Knapp, A.K., Fisher, J.I., Graham, E.A., Abatzoglou, J., Wilson, B.E., Liang, L., Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century (2009) Front. Ecol. Environ., 7 (5), pp. 253-260 Muttil, N., Lee, J.H.W., Genetic programming for analysis and real-time prediction of coastal algal blooms (2005) Ecol. Model., 189 (3-4), pp. 363-376 Nagai, S., Maeda, T., Gamo, M., Muraoka, H., Suzuki, R., Nasahara, K.N., Using digital camera images to detect canopy condition of deciduous broad-leaved trees (2011) Plant Ecol. Divers., 4, pp. 79-89 Richardson, A.D., Jenkins, J.P., Braswell, B.H., Hollinger, D.Y., Ollinger, S.V., Smith, M.L., Use of digital webcam images to track spring greep-up in a deciduous broadleaf forest (2007) Oecologia, 152, pp. 323-334 Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., Near-surface remote sensing of spatial and temporal variation in canopy phenology (2009) Ecol. Appl., 19, pp. 1417-1428 Rocha, A., Almeida, J., Nascimento, M.A., da, S., Torres, R., Goldenstein, S., Efficient and flexible cluster-and-search approach for CBIR (2008) Advanced Concepts for Intelligent Vision Systems (ACIVS'08), pp. 77-88 Schwartz, M.D., (2013) Phenology: An Integrative Environmental Science, , Springer Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A.M., Friedl, M., Braswell, B.H., Milliman, T.O., Richardson, A.D., Digital repeat photography for phenological research in forest ecosystems (2012) Agric. For. Meteorol., 152, pp. 159-177 Woebbecke, D.M., Meyer, G.E., Von-Bargen, K., Mortensen, A.D., Color indices for weed identification under various soil, residue, and lighting conditions (1995) Trans. ASAE, 38 (1), pp. 259-269 Zhao, J., Zhang, Y., Tan, Z., Song, Q., Liang, N., Yu, L., Zhao, J., Using digital cameras for comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain forest (2012) Ecol. Inform., 10, pp. 65-72 Zhou, L., He, H., Sun, X., Zhang, L., Yu, G., Ren, X.-L., Wang, J.-Y., Zhao, F.-H., Modeling winter wheat phenology and carbon dioxide fluxes at the ecosystem scale based on digital photography and eddy covariance data (2013) Ecol. Inform., 18, pp. 69-78