Capítulos de libros
Biofuels For Transport
Registro en:
9780080994246
Future Energy: Improved, Sustainable And Clean Options For Our Planet. Elsevier Inc., v. , n. , p. 215 - 244, 2013.
10.1016/B978-0-08-099424-6.00011-9
2-s2.0-84902403759
Autor
Brito Cruz C.H.
Mendes Souza G.
Barbosa Cortez L.A.
Institución
Resumen
Biofuels supplied 3. % of the energy used worldwide for road transportation in 2011. In the United States which is the largest biofuel producer in the world, biofuels generated 4. % of the energy used for transportation in 2011. In 2009, in Brazil, which is the second largest biofuel producer in the world, a total of 23. % of the energy for road transportation came from biofuels. Large-scale biofuel production in the world can substantially reduce emissions from the transport sector. In this chapter, we discuss the present status of biofuel production in the world, as well as some of the challenges relating to the environment and to the use of land, that result from large-scale biofuel production. © 2014 Elsevier Ltd All rights reserved.
215 244 https://ben.epe.gov.br/default.aspx, Empresa de Planejamento Energético- Brazil, Brazilian Energy Balance 2013 (Empresa de PesquisaEnergética - Rio de Janeiro: EPE, 2013.)http://www.eia.gov/ae, EIA, Annual Energy Review 2012Duncan, R.K., (1907) The Chemistry of Commerce, , Harper & Brothers Publishers, New York, NY, p. 147. cited by D. Klass, Biomass for Renewable Energy, Fuels, and Chemicals, Academic Press, New York, NY, 1998, p. 386 Goldemberg, J., Macedo, I., The Brazilian alcohol program - an overview (1994) Energy Sustainable Dev., 1 (1), pp. 17-22 (2008), p. 304. , BNDES, Sugar cane-based bioethanol: energy for sustainable development (BNDES and CGEE - Rio de Janeiro)(2013), p. 55. , Boeing/Embraer/FAPESP, Flightpath to Aviation Biofuels in Brazil: Action Plan, São Paulo, BrazilL. Fulton, The need for biofuels to meet global sustainability targets, Presented at the BIOEN-BIOTA-PFPMCG-SCOPE Joint Workshop on Biofuels & Sustainability, 26 February 2013, São Paulo (FAPESP), BrazilMoore, P., Temporal and spatial regulation of sucrose accumulation in the sugar cane stem (1995) Funct. Plant Biol., 22 (4), pp. 661-679 Boddey, R.M., Soares, L.H.B., Alves, B.J.R., Urquiaga, S., Bio-ethanol production in Brazil (2008) Renewable Energy Systems: Environmental and Energetic Issues, , Springer, New York, NY, D. Pimentel (Ed.) Cantarella, H., Buckeridge, M.S., Van Sluys, M.A., Souza, A.P., Garcia, A.A.F., Nishiyama, M.Y., Sugar cane: the most efficient crop for biofuel production (2012) Handbook of Bioenergy Crop Plants, , Taylor& Francis Group, Boca Rotan, FL Mutton, M.A., Rossetto, R., Mutton, M.J.R., The utilization of vinasse in agriculture (2010) Sugar Cane Bioethanol: R&D for Productivity and Sustainability, , ISBN: 978-85-212-0530-2, Coord: Luís Augusto Barbosa Cortez, Editora Edgard Blucher, 992p Navarro, A.R., Sepúlveda, M., del, C., Rubio, M.C., Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses (2000) Waste Manage., 20, pp. 581-585 Kelsall, D.R., Lyons, T.P., Grain dry milling and cooking for alcohol production: designing for 23% ethanol and maximum yield (2003) The Alcohol Textbook 4th Edition: A Reference for the Beverage, Fuel and Industrial Alcohol Industries, , Nottingham University Press, K.A. Jacques, T.P. Lyons, D.R. Kelsall (Eds.) Keim, C.R., The wet milling process: the basis for corn wet milling alcohol production (2003) The Alcohol Textbook 4th Edition: A Reference for the Beverage, Fuel and Industrial Alcohol Industries, , Nottingham University Press, K.A. Jacques, T.P. Lyons, D.R. Kelsall. (Eds.) (2005), p. 13. , IEA/OECD Biofuels for Transport - An International Perspective OECD, Figure 1http://libdigi.unicamp.br/document/?code=vtls000381157, L.M. Porto, Modelagem de Processo Industrial de FermentaçãoAlcoólicaContínua com Reatores de MisturaLigadosemSérie, Doctoral Thesis. <>, 2005 (accessed 12.06.09)(1999), M.A.F.D. Moraes, A Desregulamentação Do Setor Sucroalcooleiro Brasileiro, Doctorate Thesis, ESALQ, USP, OctoberRosillo-Calle, F., Cortez, L.A.B., Towards proalcool ii{eth}a review of The Brazilian Bioethanol Programme (1998) Biomass Bioenergy, 14 (2), pp. 115-124 http://stats.oecd.org/Index.aspx?QueryId=36348, OECD-FAO Agricultural Outlook 2012-2021Buyx, A., Tait, J., Ethical framework for biofuels (2011) Science, pp. 540-541 Goldemberg, J., Coelho, S.T., Guardabassi, P., The sustainability of ethanol production from sugar cane (2008) Energy Policy, 36 (2008), pp. 2086-2097 Moraes, A.M., Perspective: lessons from Brazil (2011) Nature, 474, pp. S25. , doi:10.1038/474S025a Macedo, I.C., Seabra, J.E.A., Silva, J.E.A.R., Green house gases emissions in the production and use of ethanol from sugar cane in Brazil: the 2005/2006 averages and a prediction for 2020 (2008) Biomass Bioenergy, 32, pp. 582-595 Seabra, J.E.A., Macedo, I.C., Chum, H.L., Faroni, C.E., Sarto, C.A., Life cycle assessment of Brazilian sugar cane products: GHG emissions and energy use (2011) Biofuels, Bioprod. Biorefin., 5, pp. 519-532 Dunn, J.B., Mueller, S., Kwon, H.-Y., Wang, M.Q., Land-use change and greenhouse gas emissions from corn and cellulosic ethanol (2013) Biotechnol. Biofuels, 6, p. 51 Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Use of U.S. Croplands for biofuels increases greenhouse gases through emissions from land-use change (2008) Science, 319, pp. 1238-1240 Melillo, J.M., Reilly, J.M., Kicklighter, D.W., Gurgel, A.C., Cronin, T.W., Paltsev, S., Indirect emissions from biofuels: how important? (2009) Science, 326, pp. 1397-1399 Smith, K.A., Mosier, A.R., Crutzen, P.J., Winiwarter, W., The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate (2012) Philos. Trans. R. Soc. B, 367, pp. 1169-1174 Do Carmo, J.B., Filoso, S., Zotelli, L.C., De Sousa Neto, E.R., Pitombo, L.M., Duarte-Neto, P.J., Infield greenhouse gas emissions from sugar cane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation (2013) GCB Bioenergy, 5, pp. 267-280 Hedal Kløverpris, J., Mueller, S., Baseline time accounting: considering global land use dynamics when estimating the climate impact of indirect land use change caused by biofuels (2013) Int. J. Life Cycle Assess., 18, pp. 319-330 Mathews, J.A., Tan, H., Biofuels and indirect land use change effects: the debate continues (2009) Biofuels Bioprod. Biorefin., 3, pp. 305-317 Wang, M., Han, J., Dunn, J.B., Cai, H., Elgowainy, A., Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugar cane and cellulosic biomass for US use (2012) Environ. Res. Lett., 7, p. 13. , doi:10.1088/1748-9326/7/4/045905, 045905 Gerbens-Leenes, P.W., van Lienden, A.R., Hoekstra, A.Y., van der Meer, T.H., Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030 (2012) Global Environ. Change, 22, pp. 764-775 Gerbens-Leenes, W., Hoekstra, A.Y., The water footprint of sweeteners and bio-ethanol (2012) Environ. Int., 40, pp. 202-211 Gerbens-Leenes, W., Hoekstra, A.Y., The water footprint of biofuel-based transport (2011) Energy Environ. Sci., 4, p. 2658 Johnson, F.X., Seebaluck, V., (2012) Bioenergy for Sustainable Development and International Competitiveness: The Role of Sugar Cane in Africa, , Routledge, ISBN: 978-1-84971-103-6 Rosillo-Calle, F., Johnson, F.X., (2010) Food versus Fuel: An Informed Introduction to Biofuels, , Zed Books, London Charles, H., Godfray, J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Food security: the challenge of feeding 9 billion people Science, 327, pp. 812-818. , doi:10.1126/science.1185383 Thompson, P.B., The agricultural ethics of biofuels: the food vs. fuel debate (2012) Agriculture, 2, pp. 339-358. , doi:10.3390/agriculture2040339 (2006), pp. 414-416. , IEA. World Energy Outlook 2006, Paris and Table 14.7, pp. 3-5. , FAO. Soaring food prices: facts, perspectives, impacts and actions required. Document HLC/08/INF/1 Prepared for the High- Level Conference on World Food Security: The Challenges of Climate Change and Bioenergy, June 2008, RomeDoornbosch, R., Steenblik, R., (2007), Biofuels: is the cure worse than the disease? Round Table on Sustainable Development, OECDhttp://www.nuffieldbioethics.org/biofuels-0, Nuffield Council on Bioethics, Biofuels: Ethical Issues (2011)De Siqueira Ferreira, S., Yutaka Nishiyama, M., Paterson, A.H., Mendes Souza, G., Biofuel and energy crops: high yield saccharinae take center stage in the post genomics era (2013) Genome Biol., 14, p. 210 Waclawovsky, A.J., Sato, P.M., Lembke, C.G., Moore, P.H., Souza, G.M., Sugar cane for bioenergy production: an assessment of yield and regulation of sucrose content (2010) Plant Biotechnol. J., 8, pp. 1-14. , doi:10.1111/j.1467-7652.2009.00491.x Hotta, C.T., Lembke, C.G., Ochoa, E.A., Cruz, G.M.Q., Domingues, D.S., Hoshino, A.A., The biotechnology roadmap for sugar cane improvement (2010) Trop. Plant Biol., , doi:10.1007/s12042-010-9050-5 Lynd, L.R., De Brito Cruz, C.H., Make way for ethanol (2010) Science, 330, p. 1176 Cortez, L.A.B., Lora, E.E.S., Gómez, E.O., (2008) Biomassapara Bioenergia, p. 732. , Editora UNICAMP, Campinas Carpita, N.C., Mc Cann, M.C., Maize and sorghum: genetic resources for bioenergy grasses (2008) Trends Plant Sci., 13, pp. 415-420 Carpita, N.C., Structure and biogenesis of the cell walls of grasses (1996) Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, pp. 445-476 Sarkar, P., Bosneaga, E., Auer, M., Plant cell walls throughout evolution: towards a molecular understanding of their design principles (2009) J. Exp. Bot., 60, pp. 3615-3635 Souza, A.P., Leite, D.C., Pattathil, S., Hahn, M., Buckeridge, M., Composition and structure of sugar cane cell wall polysaccharides: implications for second- generation bioethanol production (2012) Bioenerg. Res., pp. 1-16 Cardona, C.A., Sánchez, O.J., Fuel ethanol production: process design trends and integration opportunities (2007) Bioresour. Technol., 98, pp. 2415-2457 Silva, F.L.H., Rodrigues, M.I., MaugeriFilho, F., Dynamic modeling, simulation and optimisation of an extractive continuous fermentation process (1999) J. Chem. Tech. Bioetchnol., 74, pp. 176-182 Mariano, A.P., Angelis, D.F., MaugeriFilho, F., Atala, D.I.P., Maciel, M.R.W., MacielFilho, R., An alternative process for butanol production: continuous flash fermentation (2008) Chem. Product. Process. Model, 3, pp. 1-14 Bacovsky, D., Ludwiczek, N., Ognissanto, M., Wörgetter, M., http://demoplants.bioenergy2020.eu/files/Demoplants_Report_Final.pdf, Status of Advanced Biofuels Demonstration Facilities in 2012. A Report to IEA Bioenergy Task 39Dias, M.O.S., Junqueira, T.L., Cavalett, O., Pavanello, L.G., Cunha, M.P., Jesus, C.D.F., Biorefineries for the production of first and second generation ethanol and electricity from sugar cane (2013) Appl. Energy, 109, pp. 72-78 Green, U.N., (2011) Economy Report, Renewable Energy, , United Nations Environmental Program