dc.creatorBreviglieri C.
dc.creatorPaula L.G.L.
dc.creatorWolf W.R.
dc.creatorAzevedo J.L.F.
dc.date2013
dc.date2015-06-25T19:12:50Z
dc.date2015-11-26T15:10:12Z
dc.date2015-06-25T19:12:50Z
dc.date2015-11-26T15:10:12Z
dc.date.accessioned2018-03-28T22:20:25Z
dc.date.available2018-03-28T22:20:25Z
dc.identifier
dc.identifier31st Aiaa Applied Aerodynamics Conference. , v. , n. , p. - , 2013.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84883717790&partnerID=40&md5=2e7c0b23fa29cdb4dd5431b46be489a7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88852
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88852
dc.identifier2-s2.0-84883717790
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258006
dc.descriptionAn assessment of two numerical formulations for high-order reconstruction on unstructured triangular grids is performed. TheWeighted Essentially Non-Oscillatory (WENO) and the Spectral Finite Volume (SFV) methods are considered for the spatial discretization of the 2-D Euler equations. Several test cases discussed in the literature are addressed here to assess the resolution properties, effective order of accuracy and performance of the spatial discretization schemes. The study compares, in particular, results for linear and quadratic reconstructions. The test cases include problems with strong shock waves and other discontinuities which provide a comparative assessment of the resolution capability of the tested schemes for typical aerospace flows. In order to perform such comparisons different limiter formulations are considered. One of such formulations include the use of both the WENO and SFV discretization methods for reconstruction, depending on the flow characteristics, to provide a continuous high-order solution field, regardless of discontinuities. It is hoped that the results of the present effort could provide valuable guidelines for future developments regarding high-order methods for unstructured meshes.
dc.description
dc.description
dc.description
dc.description
dc.descriptionAmerican Institute of Aeronautics and Astronautics (AIAA)
dc.descriptionWolf, W.R., Azevedo, J.L.F., High-Order Unstructured Essentially Non Oscillatory andWeighted Essentially Non Oscillatory Schemes for Aerodynamic Flows (2006) AIAA Journal, 44 (10), pp. 2295-2310. , Oct
dc.descriptionWolf, W.R., Azevedo, J.L.F., High-Order ENO and WENO Schemes for Unstructured Grids (2007) International Journal for Numerical Methods in Fluids, 55 (10), pp. 917-943. , Dec
dc.descriptionBreviglieri, C., Basso, E., Azevedo, J.L.F., (2008) High-Order Unstructured Spectral Finite Volume Scheme for Aerodynamic Applications, , AIAA Paper No. 2008-7182, 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, Aug
dc.descriptionBreviglieri, C., Azevedo, J.L.F., Basso, E., Souza, M.A.F., Implicit High-Order Spectral Finite Volume Method for Inviscid Compressible Flows (2010) AIAA Journal, 48 (10), pp. 2365-2376. , Oct
dc.descriptionBreviglieri, C., Azevedo, J.L.F., (2012) Unsteady Aerodynamic Applications Using High-Order Unstructured Grid Methods, , AIAA Paper No. 2012-0701, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, Jan
dc.descriptionWoodward, P., Colella, P., The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks (1984) Journal of Computational Physics, 54, pp. 115-173
dc.descriptionRoe, P.L., Approximatte Riemann Solvers, Parameter Vectors, and Difference Schemes (1981) Journal of Computational Physics, 43 (2), pp. 357-372
dc.descriptionBlazek, J., (2001) Computational Fluid Dynamics: Principles and Applications, , Elsevier, Oxford, UK
dc.descriptionSoetrisno, M., Imlay, S., Roberts, D., (1994) A Zonal Implicit Procedure for Hybrid Structured-Unstructured Grids, , AIAA Paper No. 94-0645
dc.descriptionWang, Z.J., Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids: Basic Formulation (2002) Journal of Computational Physics, 178 (1), pp. 210-251. , May
dc.descriptionWang, Z.J., Liu, Y., Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids II: Extension to Two-Dimensional Scalar Equation (2002) Journal of Computational Physics, 179 (2), pp. 665-698. , Jul
dc.descriptionKnuth, D.E., (1998) The Art of Computer Programming, , 3: Sorting and Searching (2nd ed.), Addison-Wesley, Reading, MA
dc.descriptionLiu, Y., Vinokur, M., Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids (1998) Journal of Computational Physics, 140 (1), pp. 122-147. , Feb
dc.descriptionvan den Abeele, K., Lacor, C., An Accuracy and Stability Study of the 2D Spectral Volume Method (2007) Journal of Computational Physics, 226 (1), pp. 1007-1026. , Sept
dc.descriptionOllivier-Gooch, C., Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent Least-Squares Reconstruction (1997) Journal of Computational Physics, 133, pp. 6-17
dc.descriptionFriedrich, O., Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids (1998) Journal of Computational Physics, 144 (1), pp. 194-212. , July
dc.descriptionJiang, G.S., Shu, C.W., Efficient Implementation of Weighted ENO Schemes (1996) Journal of Computational Physics, 126 (1), pp. 77-99. , June
dc.descriptionAbgrall, R., On Essentially Non-oscillatory Schemes on Unstructured Meshes: Analysis and Implementation (1994) Journal of Computational Physics, 114, pp. 45-58
dc.descriptionHarten, A., Chakravarthy, S.R., (1991) Multi-Dimensional ENO Schemes for General Geometries, , ICASE Report 91-76
dc.descriptionQiu, J., Shu, C.-W., A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters (2006) SIAM J. Sci. Comput, 27 (3), pp. 995-1013
dc.descriptionBigarella, E., (2007) Advanced Turbulence Modeling for Complex Aerospace Applications, , Ph. D. Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil
dc.descriptionMcDevitt, J., Okuno, A.F., (1985) Static and Dynamic Pressure Measurements on a NACA 0012 Airfoil in the Ames High Reynolds Number Facility, , NASA TP-2485, NASA, Jun
dc.descriptionEmery, A., An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Problems (1968) Journal of Computational Physics, 2, pp. 306-331
dc.descriptionSonar, T., On the Construction of Essentially Non-Oscillatory Finite Volume Approximations to Hyperbolic Conservation Laws on General Triangulations: Polynomial Recovery, Accuracy and Stencil Selection (1997) Comput. Methods Appl. Mech. Engr, 140 (2), pp. 157-181
dc.languageen
dc.publisher
dc.relation31st AIAA Applied Aerodynamics Conference
dc.rightsfechado
dc.sourceScopus
dc.titleAssessment Of Weno And Sfv High-order Reconstruction Schemes For Aerodynamic Flows
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución