dc.creatorBozhkov Y.
dc.creatorDimas S.
dc.date2013
dc.date2015-06-25T19:12:22Z
dc.date2015-11-26T15:09:44Z
dc.date2015-06-25T19:12:22Z
dc.date2015-11-26T15:09:44Z
dc.date.accessioned2018-03-28T22:19:55Z
dc.date.available2018-03-28T22:19:55Z
dc.identifier
dc.identifierNonlinear Analysis, Theory, Methods And Applications. , v. 84, n. , p. 117 - 135, 2013.
dc.identifier0362546X
dc.identifier10.1016/j.na.2013.02.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84875191363&partnerID=40&md5=17ba69dc756390a016cb18fbd41b8459
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88763
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88763
dc.identifier2-s2.0-84875191363
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257889
dc.descriptionThe two-dimensional anisotropic Kuramoto-Sivashinsky equation is a fourth-order nonlinear evolution equation in two spatial dimensions that arises in sputter erosion and epitaxial growth on vicinal surfaces. A generalization of this equation is proposed and studied via group analysis methods. The complete group classification of this generalized Kuramoto-Sivashinsky equation is carried out; it is classified according to the property of the self-adjointness and the corresponding conservation laws are established. © 2013 Elsevier Ltd. All rights reserved.
dc.description84
dc.description
dc.description117
dc.description135
dc.descriptionWittenberg, R.W., Encyclopaedia of Mathematics, Supplement III, Kluwer, pp. 230-233
dc.descriptionKuramoto, Y., Diffusion-induced chaos in reactions systems (1978) Progr. Theoret. Phys., 64, pp. 346-367
dc.descriptionKuramoto, Y., Tsuzuki, T., On the formation of dissipative structures in reaction-diffusion systems (1975) Progr. Theoret. Phys., 54, pp. 687-699
dc.descriptionKuramoto, Y., Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium (1976) Progr. Theoret. Phys., 55, pp. 356-369
dc.descriptionSivashinsky, G.I., Nonlinear analysis of hydrodynamic instability in laminar flames - 1. Derivation of basic equations (1977) Acta Astronautica, 4 (11-12), pp. 1177-1206
dc.descriptionMichelson, D.M., Sivashinsky, G.I., Nonlinear analysis of hydrodynamic instability in laminar flames - 2. Numeircal experiments (1977) Acta Astronautica, 4 (11-12), pp. 1207-1221
dc.descriptionSivashinsky, G.I., On flame propagation under conditions of stoichiometry (1980) SIAM J. Appl. Math., 39, pp. 67-82
dc.descriptionCohen, B., Krommes, J., Tang, W., Rosenbluth, M., Nonlinear saturation of the dissipative trapped-ion mode by mode coupling (1976) Nucl. Fusion, 16, pp. 971-992
dc.descriptionLaquey, R., Mahajan, S., Rutherford, P., Tang, W., Nonlinear saturation of the trapped-ion mode (1975) Phys. Rev. Lett., 34, pp. 391-394
dc.descriptionManneville, P., The Kuramoto-Sivashinsky equation: A progress report (1988) Propagation in Systems Far from Equilibrium: Proceedings of the Workshop, pp. 265-280. , J. Wesfreid, H.R. Brand, P. Manneville, G. Albinet, N. Boccara, Springer Series in Synergetics Springer Les Houches, France
dc.descriptionSivashinsky, G.I., Michelson, D., On irregular wavy flow of a liquid film down a vertical plane (1980) Progr. Theoret. Phys., 63, pp. 2112-2114
dc.descriptionHalpin-Healy, T., Zhang, Y.-C., Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics (1995) Phys. Rep., 254, pp. 215-414
dc.descriptionCross, M.C., Hohenberg, P.C., Pattern formation outside of equilibrium (1993) Rev. Modern Phys., 65, pp. 851-1123
dc.descriptionHyman, J.M., Nicolaenko, B., The Kuramoto-Sivashinsky equation: A bridge between pdes and dynamical systems (1986) Physica D, 18, pp. 113-126
dc.descriptionHyman, J.M., Nicolaenko, B., Zaleski, S., Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces (1986) Physica D, 23, pp. 265-292
dc.descriptionKevrekidis, I.G., Nicolaenko, B., Scovel, J.C., Back in the saddle again. A computer assisted study of the Kuramoto-Sivashinsky equation (1990) SIAM Journal on Applied Mathematics, 50 (3), pp. 760-790
dc.descriptionL'Vov, V.S., Lebedev, V.V., Paton, M., Procaccia, I., Proof of scale invariant solutions in the Kardar-Parisi-Zhang and Kuramoto-Sivashinsky equations in 1 + 1 dimensions: Analytical and numerical results (1993) Nonlinearity, 6, pp. 25-47
dc.descriptionMichelson, D., Steady solutions of the Kuramoto-Sivashinsky equation (1986) Physica D, 19, pp. 89-111
dc.descriptionConte, R., Musette, M., Painlevé analysis and Backlund tranformation in the Kuramoto-Sivashinsky equation (1989) J. Phys. A: Math. Gen., 22, pp. 169-177
dc.descriptionNicolaenko, B., Scheurer, B., Temam, R., Attractors for the Kuramoto-Sivashinsky equations (1985) Physica D, 16, pp. 155-183
dc.descriptionThuai, O., Frisch, U., Natural Boundary in the Kuramoto-Sivashinsky Model, pp. 327-336. , Les Ulis: Ed. de Physique, Les Houches
dc.descriptionTemam, R., Infinite-dimensional dynamical systems in mechanics and physics (1997) Applied Mathematical Sciences, 68 VOL.. , second ed. Springer-Verlag New York
dc.descriptionWittenberg, R.W., Holmes, P., Scale and space localization in the Kuramoto-Sivashinsky equation (1999) Chaos, 9, pp. 452-465
dc.descriptionBoghosian, B.M., Chow, C.C., Hwa, T., Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions (1999) Physical Review Letters, 83 (25), pp. 5262-5265
dc.descriptionDrotar, J.T., Zhao, Y.-P., Lu, T.-M., Wang, G.-C., Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 2+1 dimensions (1999) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 59 (1), pp. 177-185
dc.descriptionGalaktionov, V.A., Mitidieri, E., Pohozaev, S.I., On global solutions and blow-up for Kuramoto-Sivashinsky-type models, and well-posed Burnett equations (2009) Nonlinear Anal., 70, pp. 2930-2952
dc.descriptionHansen, J.L., Bohr, T., Fractal tracer distributions in turbulent field theories (1998) Physica D: Nonlinear Phenomena, 118 (1-2), pp. 40-48. , PII S0167278998000037
dc.descriptionDemirkaya, A., The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2d (2009) Discrete Contin. Dyn. Syst., pp. 198-207
dc.descriptionJayaprakash, C., Hayot, F., Pandit, R., Universal properties of the two-dimensional Kuramoto-Sivashinsky equation (1993) Phys. Rev. Lett., 71, pp. 12-15
dc.descriptionRost, M., Krug, J., Anisotropic Kuramoto-Sivashinsky equation for surface growth and erosion (1995) Phys. Rev. Lett., 75, pp. 3894-3897
dc.descriptionMakeev, M.A., Barabasi, A.-L., Ion-induced effective surface diffusion in ion sputtering (1997) Applied Physics Letters, 71 (19), pp. 2800-2802
dc.descriptionNadjafikhah, M., Ahangari, F., Symmetry reduction of two-dimensional damped Kuramoto-Sivashinsky equation (2011) Commun. Theor. Phys., 56, pp. 211-217
dc.descriptionNadjafikhah, M., Ahangari, F., Lie symmetry analysis of the two-dimensional generalized Kuramoto-Sivashinsky equation (2012) Math. Sci., 6, p. 3
dc.descriptionBruzón, M.S., Gandarias, M.L., Ibragimov, N.H., Self-adjoint sub-classes of generalized thin film equations (2009) J. Math. Anal. Appl., 357, pp. 307-313
dc.descriptionIbragimov, N.H., A new conservation theorem (2007) J. Math. Anal. App, 333, pp. 311-328
dc.descriptionIbragimov, N.H., Nonlinear self-adjointness and conservation laws (2011) J. Phys. A: Math. Theor., 44, p. 432002
dc.descriptionIbragimov, N.H., Nonlinear self-adjointness in constructing conservation laws (2010) Archives of ALGA, Vol. 7/8, pp. 1-90. , N.H. Ibragimov, ALGA publications Karlskrona, Sweden
dc.descriptionDimas, S., Tsoubelis, D., SYM: A new symmetry-finding package for Mathematica, in: N. Ibragimov, C. Sophocleous (2005) The 10th International Conference in MOdern GRoup Analysis, pp. 64-70. , P. Damianou (Eds.) University of Cyprus, Nicosia
dc.descriptionDimas, S., Tsoubelis, D., A new Mathematica-based program for solving overdetermined systems of PDEs Applied Mathematica, Electronic Proceedings of the Eighth International Mathematica Symposium (IMS'06), , Y. Papegay (Ed.) France: INRIA, Avignon, France, 2006. ISBN 2-7261-1289-7
dc.descriptionPartial differential equations, algebraic computing and nonlinear systems (2008) S. Dimas, , Ph.D. Thesis, University of Patras, Patras, Greece
dc.descriptionBluman, G.W., Cheviakov, A.F., Anco, S.C., Applications of symmetry methods to partial differential equations (2009) Applied Mathematical Sciences, , Springer New York
dc.descriptionBluman, G.W., Kumei, S., (1989) Symmetries and Differential Equations, , Springer New York
dc.descriptionHydon, P.E., (2000) Symmetry Methods for Differential Equations, , first ed. Cambridge Texts in Applied Mathematics Cambridge University Press Cambridge
dc.descriptionIbragimov, N.H., (2001) Transformation Groups Applied to Mathematical Physics, , first ed. Mathematics and its Applications Springer
dc.descriptionOlver, P.J., (2000) Applications of Lie Groups to Differential Equations, 107 VOL.. , second ed. Graduate Texts in Mathematics Springer New York
dc.descriptionOvsiannikov, L., (1982) Group Analysis of Differential Equations, , first ed. Academic Press p. 432
dc.descriptionStephani, H., (1990) Differential Equations: Their Solution Using Symmetries, , MacCallum Malcolm first ed. Cambridge University Press Cambridge
dc.languageen
dc.publisher
dc.relationNonlinear Analysis, Theory, Methods and Applications
dc.rightsfechado
dc.sourceScopus
dc.titleGroup Classification And Conservation Laws For A Two-dimensional Generalized Kuramoto-sivashinsky Equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución