dc.creator | Bozhkov Y. | |
dc.creator | Dimas S. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:12:22Z | |
dc.date | 2015-11-26T15:09:44Z | |
dc.date | 2015-06-25T19:12:22Z | |
dc.date | 2015-11-26T15:09:44Z | |
dc.date.accessioned | 2018-03-28T22:19:55Z | |
dc.date.available | 2018-03-28T22:19:55Z | |
dc.identifier | | |
dc.identifier | Nonlinear Analysis, Theory, Methods And Applications. , v. 84, n. , p. 117 - 135, 2013. | |
dc.identifier | 0362546X | |
dc.identifier | 10.1016/j.na.2013.02.010 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84875191363&partnerID=40&md5=17ba69dc756390a016cb18fbd41b8459 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/88763 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/88763 | |
dc.identifier | 2-s2.0-84875191363 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1257889 | |
dc.description | The two-dimensional anisotropic Kuramoto-Sivashinsky equation is a fourth-order nonlinear evolution equation in two spatial dimensions that arises in sputter erosion and epitaxial growth on vicinal surfaces. A generalization of this equation is proposed and studied via group analysis methods. The complete group classification of this generalized Kuramoto-Sivashinsky equation is carried out; it is classified according to the property of the self-adjointness and the corresponding conservation laws are established. © 2013 Elsevier Ltd. All rights reserved. | |
dc.description | 84 | |
dc.description | | |
dc.description | 117 | |
dc.description | 135 | |
dc.description | Wittenberg, R.W., Encyclopaedia of Mathematics, Supplement III, Kluwer, pp. 230-233 | |
dc.description | Kuramoto, Y., Diffusion-induced chaos in reactions systems (1978) Progr. Theoret. Phys., 64, pp. 346-367 | |
dc.description | Kuramoto, Y., Tsuzuki, T., On the formation of dissipative structures in reaction-diffusion systems (1975) Progr. Theoret. Phys., 54, pp. 687-699 | |
dc.description | Kuramoto, Y., Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium (1976) Progr. Theoret. Phys., 55, pp. 356-369 | |
dc.description | Sivashinsky, G.I., Nonlinear analysis of hydrodynamic instability in laminar flames - 1. Derivation of basic equations (1977) Acta Astronautica, 4 (11-12), pp. 1177-1206 | |
dc.description | Michelson, D.M., Sivashinsky, G.I., Nonlinear analysis of hydrodynamic instability in laminar flames - 2. Numeircal experiments (1977) Acta Astronautica, 4 (11-12), pp. 1207-1221 | |
dc.description | Sivashinsky, G.I., On flame propagation under conditions of stoichiometry (1980) SIAM J. Appl. Math., 39, pp. 67-82 | |
dc.description | Cohen, B., Krommes, J., Tang, W., Rosenbluth, M., Nonlinear saturation of the dissipative trapped-ion mode by mode coupling (1976) Nucl. Fusion, 16, pp. 971-992 | |
dc.description | Laquey, R., Mahajan, S., Rutherford, P., Tang, W., Nonlinear saturation of the trapped-ion mode (1975) Phys. Rev. Lett., 34, pp. 391-394 | |
dc.description | Manneville, P., The Kuramoto-Sivashinsky equation: A progress report (1988) Propagation in Systems Far from Equilibrium: Proceedings of the Workshop, pp. 265-280. , J. Wesfreid, H.R. Brand, P. Manneville, G. Albinet, N. Boccara, Springer Series in Synergetics Springer Les Houches, France | |
dc.description | Sivashinsky, G.I., Michelson, D., On irregular wavy flow of a liquid film down a vertical plane (1980) Progr. Theoret. Phys., 63, pp. 2112-2114 | |
dc.description | Halpin-Healy, T., Zhang, Y.-C., Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics (1995) Phys. Rep., 254, pp. 215-414 | |
dc.description | Cross, M.C., Hohenberg, P.C., Pattern formation outside of equilibrium (1993) Rev. Modern Phys., 65, pp. 851-1123 | |
dc.description | Hyman, J.M., Nicolaenko, B., The Kuramoto-Sivashinsky equation: A bridge between pdes and dynamical systems (1986) Physica D, 18, pp. 113-126 | |
dc.description | Hyman, J.M., Nicolaenko, B., Zaleski, S., Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces (1986) Physica D, 23, pp. 265-292 | |
dc.description | Kevrekidis, I.G., Nicolaenko, B., Scovel, J.C., Back in the saddle again. A computer assisted study of the Kuramoto-Sivashinsky equation (1990) SIAM Journal on Applied Mathematics, 50 (3), pp. 760-790 | |
dc.description | L'Vov, V.S., Lebedev, V.V., Paton, M., Procaccia, I., Proof of scale invariant solutions in the Kardar-Parisi-Zhang and Kuramoto-Sivashinsky equations in 1 + 1 dimensions: Analytical and numerical results (1993) Nonlinearity, 6, pp. 25-47 | |
dc.description | Michelson, D., Steady solutions of the Kuramoto-Sivashinsky equation (1986) Physica D, 19, pp. 89-111 | |
dc.description | Conte, R., Musette, M., Painlevé analysis and Backlund tranformation in the Kuramoto-Sivashinsky equation (1989) J. Phys. A: Math. Gen., 22, pp. 169-177 | |
dc.description | Nicolaenko, B., Scheurer, B., Temam, R., Attractors for the Kuramoto-Sivashinsky equations (1985) Physica D, 16, pp. 155-183 | |
dc.description | Thuai, O., Frisch, U., Natural Boundary in the Kuramoto-Sivashinsky Model, pp. 327-336. , Les Ulis: Ed. de Physique, Les Houches | |
dc.description | Temam, R., Infinite-dimensional dynamical systems in mechanics and physics (1997) Applied Mathematical Sciences, 68 VOL.. , second ed. Springer-Verlag New York | |
dc.description | Wittenberg, R.W., Holmes, P., Scale and space localization in the Kuramoto-Sivashinsky equation (1999) Chaos, 9, pp. 452-465 | |
dc.description | Boghosian, B.M., Chow, C.C., Hwa, T., Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions (1999) Physical Review Letters, 83 (25), pp. 5262-5265 | |
dc.description | Drotar, J.T., Zhao, Y.-P., Lu, T.-M., Wang, G.-C., Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 2+1 dimensions (1999) Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 59 (1), pp. 177-185 | |
dc.description | Galaktionov, V.A., Mitidieri, E., Pohozaev, S.I., On global solutions and blow-up for Kuramoto-Sivashinsky-type models, and well-posed Burnett equations (2009) Nonlinear Anal., 70, pp. 2930-2952 | |
dc.description | Hansen, J.L., Bohr, T., Fractal tracer distributions in turbulent field theories (1998) Physica D: Nonlinear Phenomena, 118 (1-2), pp. 40-48. , PII S0167278998000037 | |
dc.description | Demirkaya, A., The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2d (2009) Discrete Contin. Dyn. Syst., pp. 198-207 | |
dc.description | Jayaprakash, C., Hayot, F., Pandit, R., Universal properties of the two-dimensional Kuramoto-Sivashinsky equation (1993) Phys. Rev. Lett., 71, pp. 12-15 | |
dc.description | Rost, M., Krug, J., Anisotropic Kuramoto-Sivashinsky equation for surface growth and erosion (1995) Phys. Rev. Lett., 75, pp. 3894-3897 | |
dc.description | Makeev, M.A., Barabasi, A.-L., Ion-induced effective surface diffusion in ion sputtering (1997) Applied Physics Letters, 71 (19), pp. 2800-2802 | |
dc.description | Nadjafikhah, M., Ahangari, F., Symmetry reduction of two-dimensional damped Kuramoto-Sivashinsky equation (2011) Commun. Theor. Phys., 56, pp. 211-217 | |
dc.description | Nadjafikhah, M., Ahangari, F., Lie symmetry analysis of the two-dimensional generalized Kuramoto-Sivashinsky equation (2012) Math. Sci., 6, p. 3 | |
dc.description | Bruzón, M.S., Gandarias, M.L., Ibragimov, N.H., Self-adjoint sub-classes of generalized thin film equations (2009) J. Math. Anal. Appl., 357, pp. 307-313 | |
dc.description | Ibragimov, N.H., A new conservation theorem (2007) J. Math. Anal. App, 333, pp. 311-328 | |
dc.description | Ibragimov, N.H., Nonlinear self-adjointness and conservation laws (2011) J. Phys. A: Math. Theor., 44, p. 432002 | |
dc.description | Ibragimov, N.H., Nonlinear self-adjointness in constructing conservation laws (2010) Archives of ALGA, Vol. 7/8, pp. 1-90. , N.H. Ibragimov, ALGA publications Karlskrona, Sweden | |
dc.description | Dimas, S., Tsoubelis, D., SYM: A new symmetry-finding package for Mathematica, in: N. Ibragimov, C. Sophocleous (2005) The 10th International Conference in MOdern GRoup Analysis, pp. 64-70. , P. Damianou (Eds.) University of Cyprus, Nicosia | |
dc.description | Dimas, S., Tsoubelis, D., A new Mathematica-based program for solving overdetermined systems of PDEs Applied Mathematica, Electronic Proceedings of the Eighth International Mathematica Symposium (IMS'06), , Y. Papegay (Ed.) France: INRIA, Avignon, France, 2006. ISBN 2-7261-1289-7 | |
dc.description | Partial differential equations, algebraic computing and nonlinear systems (2008) S. Dimas, , Ph.D. Thesis, University of Patras, Patras, Greece | |
dc.description | Bluman, G.W., Cheviakov, A.F., Anco, S.C., Applications of symmetry methods to partial differential equations (2009) Applied Mathematical Sciences, , Springer New York | |
dc.description | Bluman, G.W., Kumei, S., (1989) Symmetries and Differential Equations, , Springer New York | |
dc.description | Hydon, P.E., (2000) Symmetry Methods for Differential Equations, , first ed. Cambridge Texts in Applied Mathematics Cambridge University Press Cambridge | |
dc.description | Ibragimov, N.H., (2001) Transformation Groups Applied to Mathematical Physics, , first ed. Mathematics and its Applications Springer | |
dc.description | Olver, P.J., (2000) Applications of Lie Groups to Differential Equations, 107 VOL.. , second ed. Graduate Texts in Mathematics Springer New York | |
dc.description | Ovsiannikov, L., (1982) Group Analysis of Differential Equations, , first ed. Academic Press p. 432 | |
dc.description | Stephani, H., (1990) Differential Equations: Their Solution Using Symmetries, , MacCallum Malcolm first ed. Cambridge University Press Cambridge | |
dc.language | en | |
dc.publisher | | |
dc.relation | Nonlinear Analysis, Theory, Methods and Applications | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Group Classification And Conservation Laws For A Two-dimensional Generalized Kuramoto-sivashinsky Equation | |
dc.type | Artículos de revistas | |