dc.creatorMaschio C.
dc.creatorSchiozer D.
dc.date2013
dc.date2015-06-25T19:12:22Z
dc.date2015-11-26T15:09:43Z
dc.date2015-06-25T19:12:22Z
dc.date2015-11-26T15:09:43Z
dc.date.accessioned2018-03-28T22:19:54Z
dc.date.available2018-03-28T22:19:54Z
dc.identifier
dc.identifierEngineering Optimization. , v. , n. , p. - , 2013.
dc.identifier0305215X
dc.identifier10.1080/0305215X.2013.868453
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84891531805&partnerID=40&md5=cb76e10af2f3c0e40075a0ead7f6b3b3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88761
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88761
dc.identifier2-s2.0-84891531805
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257882
dc.descriptionIn this article, a new optimization framework to reduce uncertainties in petroleum reservoir attributes using artificial intelligence techniques (neural network and genetic algorithm) is proposed. Instead of using the deterministic values of the reservoir properties, as in a conventional process, the parameters of the probability density function of each uncertain attribute are set as design variables in an optimization process using a genetic algorithm. The objective function (OF) is based on the misfit of a set of models, sampled from the probability density function, and a symmetry factor (which represents the distribution of curves around the history) is used as weight in the OF. Artificial neural networks are trained to represent the production curves of each well and the proxy models generated are used to evaluate the OF in the optimization process. The proposed method was applied to a reservoir with 16 uncertain attributes and promising results were obtained. © 2013 © 2013 Taylor & Francis.
dc.description
dc.description
dc.description
dc.description
dc.languageen
dc.publisher
dc.relationEngineering Optimization
dc.rightsfechado
dc.sourceScopus
dc.titleA New Optimization Framework Using Genetic Algorithm And Artificial Neural Network To Reduce Uncertainties In Petroleum Reservoir Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución