dc.creatorHernandez-Oliveira e Silva S.
dc.creatorRostelato-Ferreira S.
dc.creatorRocha-e-Silva T.A.A.
dc.creatorRandazzo-Moura P.
dc.creatorDal-Belo C.A.
dc.creatorSanchez E.F.
dc.creatorBorja-Oliveira C.R.
dc.creatorRodrigues-Simioni L.
dc.date2013
dc.date2015-06-25T19:12:18Z
dc.date2015-11-26T15:09:38Z
dc.date2015-06-25T19:12:18Z
dc.date2015-11-26T15:09:38Z
dc.date.accessioned2018-03-28T22:19:49Z
dc.date.available2018-03-28T22:19:49Z
dc.identifier
dc.identifierMuscle And Nerve. , v. 47, n. 4, p. 591 - 593, 2013.
dc.identifier0148639X
dc.identifier10.1002/mus.23714
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84875602907&partnerID=40&md5=5e46c1644693d5e36dd294852eb82c39
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88740
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88740
dc.identifier2-s2.0-84875602907
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257861
dc.descriptionIntroduction: Crotamine is a basic, low-molecular-weight peptide that, at low concentrations, improves neurotransmission in isolated neuromuscular preparations by modulating sodium channels. In this study, we compared the effects of crotamine and neostigmine on neuromuscular transmission in myasthenic rats. Methods: We used a conventional electromyographic technique in in-situ neuromuscular preparations and a 4-week treadmill program. Results: During the in-situ electromyographic recording, neostigmine (17 μg/kg) caused short-term facilitation, whereas crotamine induced progressive and sustained twitch-tension enhancement during 140 min of recording (50 ± 5%, P < 0.05). On the treadmill evaluation, rats showed significant improvement in exercise tolerance, characterized by a decrease in the number of fatigue episodes after 2 weeks of a single-dose treatment with crotamine. Conclusions: These results indicate that crotamine is more efficient than neostigmine for enhancing muscular performance in myasthenic rats, possibly by improving the safety factor of neuromuscular transmission. © 2012 Wiley Periodicals, Inc.
dc.description47
dc.description4
dc.description591
dc.description593
dc.descriptionDierdorf, S.F., Walton, S., Anesthesia for patients with rare and coexisting diseases (2006) Clinic anesthesia, p. 502. , Barash PG, Cullen BF, Soelting RK, editors., 5th ed. Philadelphia: Lippincott Williams and Wilkins
dc.descriptionArgov, Z., Management of myasthenic conditions: nonimmune issues (2009) Curr Opin Neurol, 22, pp. 493-497
dc.descriptionQian-Sheng, Y., Harold, W.H., Weiming, L., Debomoy, K.L., Arnold, B., Nigel, H., Long-acting anticholinesterases for myasthenia gravis: synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine (2010) Bioorg Med Chem, 18, pp. 4687-4693
dc.descriptionBarrio, A., Vital Brazil, O., Neuromuscular action of the Crotalus terrificus terrificus poisons (1951) Acta Physiol Latinoam, 1, pp. 291-308
dc.descriptionGonçalves, J.M., Polson, A., The electrophoretic analysis of snake venoms (1947) Arch Biochem, 13, pp. 253-259
dc.descriptionGonçalves, J.M., Estudos sobre venenos de serpentes brasileiras. II-Crotalus terrificus crotaminicus, subespécie biológica (1956) Ann Acad Bras Ci{ring in equal to}nc, 28, pp. 365-367
dc.descriptionRádis-Baptista, G., Kerkis, I., Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties (2011) Curr Pharm Des, 17, pp. 4351-4361
dc.descriptionOwnby, C.L., Structure, function and biophysical aspects of the myotoxins from snake venoms (1998) J Toxicol Toxin Rev, 17, pp. 213-238
dc.descriptionVital Brazil, O., Prado-Franceschi, J., Laure, C.J., Repetitive muscle responses induced by crotamine (1979) Toxicon, 17, pp. 61-69
dc.descriptionMatavel, A.C.S., Ferreira-Alves, D.L., Beirão, P.S.L., Cruz, J.S., Tension generation and increase of voltage-activated sodium current by crotamine (1998) Eur J Pharmacol, 348, pp. 167-173
dc.descriptionVital Brazil, O., Fontana, M.D., Toxins as tools in the study of sodium channel distribution in the muscle fiber membrane (1993) Toxicon, 31, pp. 1085-1098
dc.descriptionChang, C.C., Tseng, K.H., Effect of crotamine, a toxin of South American rattlesnake venom, on the sodium channel of murine skeletal muscle (1978) Br J Pharmacol, 63, pp. 551-559
dc.descriptionCamillo, M.A.P., Arruda Paes, P.C., Troncone, L.R.P., Rogero, J.R., Gyroxin fails to modify in vitro release of labeled dopamine and acetylcholine from rat and mouse striatal tissue (2001) Toxicon, 39, pp. 843-853
dc.descriptionKawanami, S., Mori, S., Experimental autoimmune myasthenia gravis induced by thymic acetylcholine receptor-like protein (1994) Fukuoka Igaku Zasshi, 85, pp. 120-127
dc.descriptionDal Belo, C.A., Leite, G.B., Fontana, M.D., Corrado, A.P., Zanandréa Baso, A.C., New evidence for a presynaptic action of prednisolone at neuromuscular junction (2002) Muscle Nerve, 26, pp. 37-43
dc.descriptionBrown, G.L., The neuromuscular junction (1938) J Physiol, 92, p. 22
dc.descriptionPriviero, F., De Nucci, G., Antunes, E., Zanesco, A., Negative chronotropic response to adenosine receptor stimulation in rat right atria after run training (2004) Clin Exp Pharmacol Physiol, 31, pp. 741-743
dc.descriptionPourmand, R., Myasthenia gravis (1997) Dis Mon, 43, pp. 65-109
dc.descriptionTzartos, S.J., Barkas, T., Cung, M.T., Mamalaki, A., Marraud, M., Orlewski, F., Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor (1998) Immunol Rev, 163, pp. 89-120
dc.descriptionSerra, A., Ruff, R., Kaminski, H., Leigh, J.R., Factors contributing to failure of neuromuscular transmission in myasthenia gravis and the special case of the extraocular muscles (2011) Ann NY Acad Sci, 1233, pp. 26-33
dc.descriptionPritchard, E.A.B., The use of "Prostigmin" in the treatment of myasthenia gravis (1935) Lancet, 1, pp. 432-434
dc.descriptionSieb, J.P., Myasthenia gravis: emerging new therapy options (2005) Curr Opin Pharmacol, 5, pp. 303-307
dc.descriptionMehndiratta, M.M., Pandey, S., Kuntzer, T., Acetylcholinesterase inhibitor treatment for myasthenia gravis (2011) Cochrane Database Syst Rev, 16, pp. CD006986
dc.descriptionMantegazza, R., Bonanno, S., Camera, G., Antozzi, C., Current and emerging therapies for the treatment of myasthenia gravis (2011) Neuropsychiatr Dis Treat, 7, pp. 151-160
dc.descriptionRichman, D.P., Agius, M.A., Treatment of autoimmune myasthenia gravis (2003) Neurology, 61, pp. 1652-1661
dc.descriptionToyama, M.H., Marangoni, S., Novello, J.C., Leite, G.B., Prado-Franceschi, J., da Cruz-Höfling, M.A., Biophysical, histopathological and pharmacological characterization of crotamine isoforms F22 and F32 (2003) Toxicon, 41, pp. 493-500
dc.descriptionPonce-Soto, L.A., Martins-de-Souza, D., Novello, J.C., Marangoni, S., Structural and biological characterization of two crotamine isoforms IV-2 and IV-3 isolated from the Crotalus durissus cumanensis venom (2007) Protein J, 26, pp. 533-540
dc.descriptionPonce-Soto, L.A., Martins-de-Souza, D., Marangoni, S., Structural and pharmacological characterization of the crotamine isoforms III-4 (MYX4-CROCu) and III-7 (MYX7-CROCu) isolated from the Crotalus durissus cumanensis venom (2010) Toxicon, 55, pp. 1443-1452
dc.descriptionSlater, C.R., Structural factors influencing the efficacy of neuromuscular transmission (2008) Ann NY Acad Sci, 1132, pp. 1-12
dc.languageen
dc.publisher
dc.relationMuscle and Nerve
dc.rightsfechado
dc.sourceScopus
dc.titleBeneficial Effect Of Crotamine In The Treatment Of Myasthenic Rats
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución