dc.creatorBoaretto L.F.
dc.creatorMazzafera P.
dc.date2013
dc.date2015-06-25T19:12:04Z
dc.date2015-11-26T15:09:22Z
dc.date2015-06-25T19:12:04Z
dc.date2015-11-26T15:09:22Z
dc.date.accessioned2018-03-28T22:19:33Z
dc.date.available2018-03-28T22:19:33Z
dc.identifier
dc.identifierAnnals Of Applied Biology. , v. 163, n. 1, p. 12 - 22, 2013.
dc.identifier34746
dc.identifier10.1111/aab.12031
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84879011660&partnerID=40&md5=8748b77145c71c2eb9270c6b74c1305d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88692
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88692
dc.identifier2-s2.0-84879011660
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257801
dc.descriptionMaize, sorghum, sugarcane, switchgrass and miscanthus are the main crops suggested as potential sources of lignocellulosic biomass for the production of second-generation ethanol. The attention these crops have received has been concentrated in the field of genomics, and very little research has been performed in the field of proteomics, particularly in the cell wall proteomic, despite the importance of these crops in biofuel production. New mass spectrometry-based proteomic methods allow the identification and quantification of thousands of proteins in complex mixtures, as well as the detection of post-translational changes in complex proteomes, providing important insight into the downstream consequences of gene expression. Together with other 'omic' approaches, proteomic might be decisive to bring new information in the study of cell wall formation. Here, we briefly highlight proteomic techniques and review the research that has been completed on the proteomes of these five crops. © 2013 Association of Applied Biologists.
dc.description163
dc.description1
dc.description12
dc.description22
dc.descriptionAmalraj, R.S., Selvaraj, N., Veluswamy, G.K., Ramanujan, R.P., Muthurajan, R., Palaniyandi, M., Agrawal, G.K., Viswanathan, R., Sugarcane proteomics: Establishment of a protein extraction method for 2-DE in stalk tissues and initiation of sugarcane proteome reference map (2010) Electrophoresis, 31, pp. 1959-1974
dc.descriptionAnderson, N.L., Anderson, N.G., Proteome and proteomics: New technologies, new concepts, and new words (1998) Electrophoresis, 19 (11), pp. 1853-1861
dc.descriptionAzevedo, R.A., Carvalho, R.F., Cia, M.C., Gratão, P.L., Sugarcane under pressure: An overview of biochemical and physiological studies of abiotic stress (2011) Tropical Plant Biology, 4, pp. 42-51
dc.descriptionBaginsky, S., Plant proteomics: Concepts, applications, and novel strategies for data interpretation (2009) Mass Spectrometry Reviews, 28, pp. 93-120
dc.descriptionBarcelõ, J., Poschenrieder, C., Gunsé, B., Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. contender) under both normal and water stress conditions (1986) Journal of Experimental Botany, 37, pp. 178-187
dc.descriptionBayer, E.M., Bottrill, A.R., Walshaw, J., Vigouroux, M., Naldrett, M.J., Thomas, C.L., Maule, A.J., Arabidopsis cell wall proteome defined using multidimensional protein identification technology (2006) Proteomics, 6 (1), pp. 301-311. , DOI 10.1002/pmic.200500046
dc.description(2011), https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2011.pdf, BEN - Balanço Energético Nacional. Ano base 2010 - Resultados preliminares. Rio de Janeiro, RJ, Brazil. URL [accessed on 16 May 2012]Benesová, M., Holá, D., Fischer, L., Jedelsky, P.L., Hnilicka, F., Wilhelmová, N., Rothová, O., Hnilicková, H., The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration? (2012) PLoS One, 7, pp. e38017
dc.descriptionBerthet, S., Demont-Caulet, N., Pollet, B., Bidzinski, P., Cezard, L., Le Bris, P., Borrega, N., Jouanin, L., Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems (2011) The Plant Cell, 23, pp. 1124-1137
dc.descriptionBoerjan, W., Ralph, J., Baucher, M., Lignin Biosynthesis (2003) Annual Review of Plant Biology, 54, pp. 519-546. , DOI 10.1146/annurev.arplant.54.031902.134938
dc.descriptionBorderies, G., Jamet, E., Lafitte, C., Rossignol, M., Jauneau, A., Boduart, G., Monsarrat, B., Pont-Lezica, R., Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: A critical analysis (2003) Electrophoresis, 24 (19-20), pp. 3421-3432
dc.descriptionBoudart, G., Jamet, E., Rossignol, M., Lafitte, C., Borderies, G., Jauneau, A., Esquerre-Tugaye, M.-T., Pont-Lezica, R., Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: Identification by mass spectrometry and bioinformatics (2005) Proteomics, 5 (1), pp. 212-221. , DOI 10.1002/pmic.200400882
dc.descriptionBouton, J.H., Molecular breeding of switchgrass for use as a biofuel crop (2007) Current Opinion in Genetics and Development, 17 (6), pp. 553-558. , DOI 10.1016/j.gde.2007.08.012, PII S0959437X07001633, Genomes and Evolution
dc.descriptionBrenner, E.A., Salazar, A.M., Zabotina, O.A., Lübberstedt, T., Characterization of European forage maize line for stover composition and associations with polymorphism within O-methyltransferase genes (2012) Plant Science, 185, pp. 281-287
dc.descriptionCarpita, N.C., Structure and biogenesis of the cell wall of grasses (1996) Annual Review of Plant Physiology and Plant Molecular Biology, 47, pp. 445-476
dc.descriptionCarroll, A., Somerville, C., Cellulosic biofuels (2009) Annual Review of Plant Biology, 60, pp. 165-182
dc.descriptionCesarino, I., Araújo, P., Mayer, J.L.S., Leme, A.F.P., Mazzafera, P., Enzymatic activity and proteomic profile of class III peroxidases during sugarcane stem development (2012) Plant Physiology and Biochemistry, 55, pp. 66-76. , (a)
dc.descriptionCesarino, I., Araújo, P., Leme, A.F.P., Creste, S., Mazzafera, P., Suspension cell culture as a tool for the characterization of class III peroxidases in sugarcane (2012) Plant Physiology and Biochemistry, 62, pp. 1-10. , (b)
dc.descriptionCesarino, I., Araújo, P., Mayer, J.L.S., Vicentini, R., Berthet, S., Demedts, B., Vanholme, B., Mazzafera, P., Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant (2013) Journal of Experimental Botany, 64, pp. 1769-1781
dc.descriptionChapelle, A., Morreel, K., Vanholme, R., Le-Bris, P., Morin, H., Lapierre, C., Boerjan, W., Demont-Caulet, N., Impact of the absence of stem-specific β-glucosidases on lignin and monolignols (2012) Plant Physiology, 160, pp. 1204-1217
dc.descriptionCharmont, S., Jamet, E., Pont-Lezica, R., Canut, H., Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: Improved recovery following removal of phenolic compounds (2005) Phytochemistry, 66 (4), pp. 453-461. , DOI 10.1016/j.phytochem.2004.12.013
dc.descriptionChen, F., Dixon, R.A., Lignin modification improves fermentable sugar yields for biofuel production (2007) Nature Biotechnology, 25 (7), pp. 759-761. , DOI 10.1038/nbt1316, PII NBT1316
dc.descriptionCia, M.C., Guimarães, A.C.R., Medici, L.O., Chabregas, S.M., Azevedo, R.A., Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties (2012) Annals of Applied Biology, 161, pp. 313-324
dc.descriptionCosio, C., Dunand, C., Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana (2010) BMC Genomics, 11, p. 528
dc.descriptionDembinsky, D., Woll, K., Saleem, M., Liu, Y., Fu, Y., Borsuk, L.A., Lamkemeyer, T., Hochholdinger, F., Transcriptomic and proteomic analyses of pericycle cells of the maize primary root (2007) Plant Physiology, 145 (3), pp. 575-588. , http://www.plantphysiol.org/cgi/reprint/145/3/575, DOI 10.1104/pp.107.106203
dc.descriptionDien, B.S., Sarath, G., Pedersen, J.F., Sattler, S.E., Chen, H., Funnell-Harris, D.L., Nichols, N.N., Cotta, M.A., Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents (2009) Bioenergy Research, 2, pp. 153-164
dc.descriptionDreisewerd, K., The desorption process in MALDI (2003) Chemical Reviews, 103, pp. 395-425
dc.descriptionEberl, H.C., Mann, M., Vermeulen, M., Quantitative proteomics for epigenetics (2011) ChemBioChem, 12, pp. 224-234
dc.descriptionFeiz, L., Irshad, M., Pont-Lezica, R.F., Canut, H., Jamet, E., Evaluation of cell wall preparation for proteomics: A new procedure for purify cell walls from Arabidopsis hypocotyls (2006) Plant Methods, 2, p. 10
dc.descriptionFenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M., Electrospray ionization for mass spectrometry of large biomolecules (1989) Science, 246 (4926), pp. 64-71
dc.descriptionFournier, M.L., Gilmore, J.M., Martin-Brown, S.A., Washburn, M.P., Multidimensional separations-based shotgun proteomics (2007) Chemical Reviews, 107 (8), pp. 3654-3686. , DOI 10.1021/cr068279a
dc.descriptionGhelfi, A., Gaziola, S.A., Cia, M.C., Chabregas, S.M., Falco, M.C., Kuser-Falcão, P.R., Azevedo, R.A., Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum (2011) Annals of Applied Biology, 159, pp. 267-280
dc.descriptionGoldemberg, J., Ethanol for a sustainable energy future (2007) Science, 315, pp. 808-810
dc.descriptionGray, J., Caparrõs-Ruiz, D., Grotewold, E., Grass phenylpropanoids: Regulate before use! (2012) Plant Science, 184, pp. 112-120
dc.descriptionHodkinson, T.R., Renvoize, S.A., Nomenclature of Miscanthus × giganteus (Poaceae) (2001) Kew Bulletin, 56, pp. 759-760
dc.descriptionHoffmann, E., Stroobant, V., (2007) Mass Spectrometry: Principles and Applications, , 3rd edn. Chichester, UK: John Wiley & Sons Ltd
dc.descriptionIto, J., Petzold, C.J., Mukhopadhyay, A., Heazlewood, J.L., The role of proteomics in the development of cellulosic biofuels (2010) Current Proteomics, 7, pp. 121-134
dc.descriptionJacobsen, S.E., Wyman, C.E., Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration (2002) Industrial and Engineering Chemistry Research, 41 (6), pp. 1454-1461
dc.descriptionJamet, E., Albenne, C., Boudart, G., Irshad, M., Canut, H., Pont-Lezica, R., Recent advances in plant cell wall proteomics (2008) Proteomics, 8 (4), pp. 893-908. , DOI 10.1002/pmic.200700938
dc.descriptionJones, M.B., Walsh, M., (2001) Miscanthus - For Energy and Fibre, , London, UK: James and James Science Publishers
dc.descriptionJung, H.-J.G., Samac, D.A., Sarath, G., Modifying crops to increase cell wall digestibility (2012) Plant Science, 185, pp. 65-77
dc.descriptionKeegstra, K., Plant cell walls (2010) Plant Physiology, 154, pp. 483-486
dc.descriptionKoller, A., Washburn, M.P., Lange, B.M., Andon, N.L., Deciu, C., Haynes, P.A., Hays, L., Yates III, J.R., Proteomic survey of metabolic pathways in rice (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (18), pp. 11969-11974. , DOI 10.1073/pnas.172183199
dc.descriptionKwon, H.-K., Yokoyama, R., Nishitani, K., A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells (2005) Plant and Cell Physiology, 46 (6), pp. 843-857. , DOI 10.1093/pcp/pci089
dc.descriptionLink, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M., Yates III, J.R., Direct analysis of protein complexes using mass spectrometry (1999) Nature Biotechnology, 17 (7), pp. 676-682. , DOI 10.1038/10890
dc.descriptionLiu, Z.L., Slininger, P.J., Dien, B.S., Berhow, M.A., Kurtzman, C.P., Gorsich, S.W., Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran (2004) Journal of Industrial Microbiology and Biotechnology, 31 (8), pp. 345-352. , DOI 10.1007/s10295-004-0148-3
dc.descriptionLiu, C.-J., Miao, Y.-C., Zhang, K.-W., Sequestration and transport of lignin monomeric precursors (2011) Molecules, 16, pp. 710-727
dc.descriptionLynd, L.R., Van Zyl, W.H., McBride, J.E., Laser, M., Consolidated bioprocessing of cellulosic biomass: An update (2005) Current Opinion in Biotechnology, 16 (5), pp. 577-583. , DOI 10.1016/j.copbio.2005.08.009, PII S0958166905001369, Tissue and Cell Engineering/Biochemical Engineering
dc.descriptionMann, M., Hendrickson, R.C., Pandey, A., Analysis of proteins and proteomes by mass spectrometry (2001) Annual Review of Biochemistry, 70, pp. 437-473. , DOI 10.1146/annurev.biochem.70.1.437
dc.descriptionManners, J.M., Casu, R.E., Transcriptome and analysis and functional genomics of sugarcane (2011) Tropical Plant Biology, 4, pp. 9-21
dc.descriptionMcMillan, J.D., Pretreatment of lignocellulosic biomass (1994) Enzymatic Conversion of Biomass for Fuel Production, pp. 292-324. , In, Eds M.E. Himmel, J.O. Baker and R.P. Overend. Washington, DC, USA: American Chemical Society
dc.descriptionMiao, Y.-C., Liu, C.-J., ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 22728-22733
dc.descriptionMoore, P.H., Temporal and spatial regulation of sucrose accumulation in the sugarcane stem (1995) Australian Journal of Plant Physiology, 22, pp. 661-679
dc.descriptionMorreel, K., Ralph, J., Kim, H., Lu, F., Goeminne, G., Ralph, S., Messens, E., Boerjan, W., Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem (2004) Plant Physiology, 136 (3), pp. 3537-3549. , DOI 10.1104/pp.104.049304
dc.descriptionNeutelings, G., Lignin variability in plant cell walls: Contribution of new models (2011) Plant Science, 181, pp. 379-386
dc.descriptionNgara, R., Ndimba, R., Borch-Jensen, J., Jensen, O.N., Ndimba, B., Identification and profiling of salinity stress-responsive protein in Sorghum bicolor seedlings (2012) Journal of Proteomics, 75, pp. 4139-4150
dc.descriptionOkamoto, T., Higuchi, K., Shinkawa, T., Isobe, T., Lorz, H., Koshiba, T., Kranz, E., Identification of major proteins in maize egg cells (2004) Plant and Cell Physiology, 45 (10), pp. 1406-1412
dc.descriptionPalmqvist, E., Grage, H., Meinander, N.Q., Hahn-Hagerdal, B., Main and interaction effects of acetic acid, furfural, and p- hydroxybenzoic acid on growth and ethanol productivity of yeasts (1999) Biotechnology and Bioengineering, 63 (1), pp. 46-55. , DOI 10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
dc.descriptionPaterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Rokhsar, D.S., The Sorghum bicolor genome and the diversification of grasses (2009) Nature, 457, pp. 551-556
dc.descriptionPechanova, O., Pechan, T., Ozkan, S., McCarthy, F.M., Williams, W.P., Luthe, D.S., Proteome profile of the developing maize (Zea mays L.) rachis (2010) Proteomics, 10, pp. 3051-3055
dc.descriptionPitann, B., Zörb, C., Mühling, K.H., Comparative proteome analysis of maize (Zea mays L.) expansins under salinity (2009) Journal of Plant Nutrition and Soil Science, 172, pp. 75-77
dc.descriptionSaathoff, A.J., Sarath, G., Chow, E.K., Dien, B.S., Tobias, C.M., Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulose treatment (2011) PLoS One, 6, pp. e16416
dc.descriptionSaballos, A., Vermerris, W., Rivera, L., Ejeta, G., Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench) (2008) Bioenergy Research, 1, pp. 193-204
dc.descriptionSalve, R., Surve, V., Machewad, G.M., Ghatge, P., Effect of substrate concentration on production of ethanol from corn cob (2012) Omicsonline, 1, pp. 1-5
dc.descriptionSattler, S.E., Funnel-Harris, D.L., Pedersen, J.F., Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues (2010) Plant Science, 178, pp. 229-238
dc.descriptionSchmer, M.R., Vogel, K.P., Mitchell, R.B., Perrin, R.K., Net energy of cellulosic ethanol from switchgrass (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (2), pp. 464-469. , http://www.pnas.org/cgi/reprint/105/2/464, DOI 10.1073/pnas.0704767105
dc.descriptionSchroeder, J.I., Nambara, E., A Quick Release Mechanism for Abscisic Acid (2006) Cell, 126 (6), pp. 1023-1025. , DOI 10.1016/j.cell.2006.09.001, PII S0092867406011482
dc.descriptionSekhwal, M.K., Swami, A.K., Sarin, R., Sharma, V., Identification of salt treated proteins in sorghum using gene ontology linkage (2012) Physiology and Molecular Biology of Plants, 18, pp. 209-216
dc.descriptionSharmin, S.A., Alam, I., Kim, K.H., Kim, Y.G., Kim, P.J., Bahk, J.D., Lee, B.H., Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis (2012) Plant Science, 187, pp. 113-126
dc.descriptionSharp, R.E., Interaction with ethylene: Changing views on the role of abscisic acid in root and shoot growth responses to water stress (2002) Plant, Cell and Environment, 25 (2), pp. 211-222. , DOI 10.1046/j.1365-3040.2002.00798.x
dc.descriptionSoccol, C.R., Vandenberghe, L.P.S., Medeiros, A.B.P., Karp, S.G., Buckeridge, M., Ramos, L.P., Pitarelo, A.P., Torres, F.A.G., Bioethanol from lignocelluloses: Status and perspective in Brazil (2010) Bioresource Technology, 101, pp. 4820-4825
dc.descriptionSpiro, R.G., Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds (2002) Glycobiology, 12 (4), pp. 43R-56R
dc.descriptionStewart, Jr.C.N., Liu, G.-S., Bioenergy plants in the United States and China (2011) Plant Science, 181, pp. 621-622
dc.descriptionSun, Y., Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: A review (2002) Bioresource Technology, 83 (1), pp. 1-11. , DOI 10.1016/S0960-8524(01)00212-7, PII S0960852401002127
dc.descriptionSwami, A.K., Alam, S.I., Sengupta, N., Sarin, R., Differential proteomic analysis of salt stress response in Sorghum bicolor leaves (2011) Environmental and Experimental Botany, 71, pp. 321-328
dc.descriptionTaiz, L., Zeiger, E., (2010) Plant Physiology, , Sunderland, MA, USA: Sinauer Associates
dc.descriptionTanaka, K., The origin of macromolecule ionization by laser irradiation (Nobel lecture) (2003) Angewandte Chemie International Edition, 42, pp. 3860-3870
dc.description(2012), http://usda01.library.cornell.edu/usda/nass/CropProdSu//2010s/2012/ CropProdSu-01-12-2012.pdf, USDA - United States Department of Agriculture - National Agricultural Statistics Service URLVanholme, R., Morreel, K., Ralph, J., Boerjan, W., Lignin engineering (2008) Current Opinion in Plant Biology, 1, pp. 1278-1285
dc.descriptionVanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W., Lignin biosynthesis and structure (2010) Plant Physiology, 153, pp. 895-905
dc.descriptionVanholme, R., Morreel, K., Darrah, C., Oyarce, P., Grabber, J.H., Ralph, J., Boerjan, W., Metabolic engineering of novel lignin in biomass crops (2012) New Phytologist, 196, pp. 978-1000
dc.descriptionWang, W., Vinocur, B., Altman, A., Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance (2003) Planta, 218 (1), pp. 1-14. , DOI 10.1007/s00425-003-1105-5
dc.descriptionWang, T.Y., Chen, H.L., Li, W.H., Sung, H.M., Shih, M.C., Omics applications to biofuel research (2010) Biocatalysis and Biomolecular Engineering, pp. 265-276. , In, Eds C.T. Hou and J.F. Shaw. New York, NY, USA: John Wiley & Sons
dc.descriptionWatson, B.S., Lei, Z., Dixon, R.A., Sumner, L.W., Proteomics of Medicago sativa cell walls (2004) Phytochemistry, 65 (12), pp. 1709-1720. , DOI 10.1016/j.phytochem.2004.04.026, PII S0031942204001839
dc.descriptionWilkins, M.R., Sanches, J.C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., Hochstrasser, D.F., Williams, K.L., Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it (1996) Biotechnology and Genetic Engineering Reviews, 13, pp. 19-50
dc.descriptionWyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y., Coordinated development of leading biomass pretreatment technologies (2005) Bioresource Technology, 96 (18 SPEC. ISS.), pp. 1959-1966. , DOI 10.1016/j.biortech.2005.01.010, PII S0960852405000635
dc.descriptionYates, J.R., Mass spectral analysis in proteomics (2004) Annual Review of Biophysics and Biomolecular Structure, 33, pp. 297-316
dc.descriptionYates, J.R., Ruse, C.I., Nakorchevsky, A., Proteomics by mass spectrometry: Approaches, advances, and applications (2009) Annual Review of Biomedical Engineering, 11, pp. 49-79
dc.descriptionYuan, J.S., Tiller, K.H., Al-Ahmad, H., Stewart, N.R., Stewart, Jr.C.N., Plants to power: Bioenergy to fuel the future (2008) Trends in Plant Science, 13, pp. 421-429
dc.descriptionZhang, Y., Giboulot, A., Zivy, M., Valot, B., Jamet, E., Albenne, C., Combining various strategies to increase the coverage of the plant cell wall glycoproteome (2011) Phytochemistry, 72, pp. 1109-1123
dc.descriptionZhou, G., Yang, L.T., Li, Y.R., Zou, C.L., Huang, L.P., Qiu, L.H., Huang, X., Srivastava, M.K., Proteomic analysis of osmotic stress-response proteins in sugarcane leaves (2012) Plant Molecular Biology Reporter, 30, pp. 349-359
dc.descriptionZhu, J., Chen, S., Alvarez, S., Asirvatham, V.S., Schachtman, D.P., Wu, Y., Sharp, R.E., Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins (2006) Plant Physiology, 140 (1), pp. 311-325. , DOI 10.1104/pp.105.070219
dc.descriptionZhu, J., Alvarez, S., Marsh, E.L., LeNoble, M.E., Cho, I.-J., Sivaguru, M., Chen, S., Sharp, R.E., Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit (2007) Plant Physiology, 145 (4), pp. 1533-1548. , http://www.plantphysiol.org/cgi/reprint/145/4/1533, DOI 10.1104/pp.107.107250
dc.languageen
dc.publisher
dc.relationAnnals of Applied Biology
dc.rightsfechado
dc.sourceScopus
dc.titleThe Proteomes Of Feedstocks Used For The Production Of Second-generation Ethanol: A Lacuna In The Biofuel Era
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución