dc.creatorSoriano D.
dc.creatorSilva E.L.
dc.creatorSlenes G.F.
dc.creatorLima F.O.
dc.creatorUribe L.F.S.
dc.creatorCoelho G.P.
dc.creatorRohmer E.
dc.creatorVenancio T.D.
dc.creatorBeltramini G.C.
dc.creatorCampos B.M.
dc.creatorAnjos C.A.S.
dc.creatorSuyama R.
dc.creatorLi L.M.
dc.creatorCastellano G.
dc.creatorAttux R.
dc.date2013
dc.date2015-06-25T19:11:19Z
dc.date2015-11-26T15:09:05Z
dc.date2015-06-25T19:11:19Z
dc.date2015-11-26T15:09:05Z
dc.date.accessioned2018-03-28T22:19:17Z
dc.date.available2018-03-28T22:19:17Z
dc.identifier9781467330244
dc.identifierIssnip Biosignals And Biorobotics Conference, Brc. , v. , n. , p. - , 2013.
dc.identifier23267771
dc.identifier10.1109/BRC.2013.6487494
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84876746986&partnerID=40&md5=acd3922ed0e2ccdd10811768acdc7b96
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88635
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88635
dc.identifier2-s2.0-84876746986
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257744
dc.descriptionThe development of brain-computer interfaces (BCIs) for disabled patients is currently a growing field of research. Most BCI systems are based on electroencephalography (EEG) signals, and within this group, systems using motor imagery (MI) are amongst the most flexible. However, for stroke patients, the motor areas of the brain are not always available for use in these types of devices. The aim of this work was to evaluate a set of imagery-based cognitive tasks (right-hand MI versus music imagery, with rest or 'blank' periods in between), using functional Magnetic Resonance Imaging (fMRI) and EEG. Eleven healthy subjects (control group) and four stroke patients were evaluated with fMRI, and nine of the healthy subjects also underwent an EEG test. The fMRI results for the control group showed specific and statistically differentiable activation patterns for motor versus music imagery (t-test, p < 0.001). For stroke patients the fMRI results showed a very large variability, with no common activation pattern for either of the imagery tasks. Corroborating this fact, EEG results concerning feature selection for minimizing the classification error (using the Davies-Bouldin index) have also found no common activation pattern, although a well-defined set of meaningful electrodes and frequencies was found for some subjects. In terms of classification performance using EEG data, this work has detected a group of subjects with classifier rate of success up to 60%, which is promising in view of the cognitive complexity of the adopted tasks. © 2013 IEEE.
dc.description
dc.description
dc.description
dc.description
dc.descriptionSoekadar, S., Birbaumer, N., Cohen, L.G., Brain-computer-interfaces in the rehabilitation of stroke and neurotrauma (2011) Systems Neuroscience and Rehabilitation, pp. 3-18. , chapter 1, K Kansaku and LG Cohen, Eds. Tokyo: Springer Japan
dc.descriptionDaly, J.J., Wolpaw, J.R., Brain-computer interfaces in neurological rehabilitation (2008) Lancet Neurology, 7 (11), pp. 1032-1043
dc.descriptionGomez-Rodriguez, M., Grosse-Wentrup, M., Hill, J., Gharabaghix, A., Schölkopf, B., Peters, J., Towards brain-robot interfaces in stroke rehabilitation (2011) IEEE 12th International Conference on Rehabilitation Robotics, , Switzerland
dc.descriptionNicolas-Alonso, L., Gomez-Gil, J., Brain computer interfaces, a review (2012) Sensors, 12, pp. 1211-1279
dc.descriptionNeuper, C., Scherer, R., Wriessnegger, S., Pfurtschelle, G., Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface (2009) Clinical Neurophysiology, 120, pp. 239-247
dc.descriptionBerman, B., Horovitz, S., Venkataraman, G., Hallett, M., Selfmodulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback (2012) Neuroimage, 59 (2), pp. 917-925
dc.descriptionBirch, G., Bozorgzadeh, Z., Mason, S., Initial on-line evaluations of the LF-ASD brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials (2002) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (4), pp. 219-224
dc.descriptionFormaggio, E., Storti, S., Cerini, R., Fiaschi, A., Manganotti, P., Brain oscillatory activity during motor imagery in EEG-fMRI coregistration (2010) Magnetic Resonance Imaging, 28, pp. 1403-1412
dc.descriptionHalder, S., Agorastos, D., Veit, R., Hammer, E.M., Lee, S., Varkuti, B., Neural mechanisms of brain-computer interface control (2011) Neuro Image, 55, pp. 1779-1790
dc.descriptionHermes, D., Vansteensel, M.J., Albers, A.M., Bleichner, M.G., Benedictus, M.R., Mendez, C., Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces (2011) Journal of Neural Engineering, 8, p. 025007
dc.descriptionMcFarland, D.J., Miner, L.A., Vaughan, T.M., Wolpaw, J.R., Mu and beta rhythm topographies during motor imagery and actual movements (2000) Brain Topography, 12 (3), pp. 177-186
dc.descriptionZatorre, R.J., Halpern, A.R., Mental concerts: Musical imagery and auditory cortex (2005) Neuron, 47, pp. 9-12
dc.descriptionSchaefer, R.S., Farquhar, J., Blokland, Y., Sadakata, M., Desain, P., Name that tune: Decoding music from the listening brain (2011) Neuro Image, 56, pp. 843-849
dc.descriptionSchaefer, R.S., Vlek, R.J., Desain, P., Music perception and imagery in EEG: Alpha band effects of task and stimulus (2011) International Journal of Psychophysiology, 82, pp. 254-259
dc.descriptionSchaefer, R.S., Vlek, R.J., Desain, P., Decomposing rhythm processing: Electroencephalography of perceived and self-imposed rhythmic patterns (2011) Psychological Research, 75, pp. 95-106
dc.descriptionVlek, R.J., Schaefer, R.S., Gielen, C.C.A.M., Farquhar, J.D.R., Desain, P., Shared mechanisms in perception and imagery of auditory accents (2011) Clinical Neurophysiology, 122, pp. 1526-1532
dc.descriptionSchaefer, R.S., Blokland, Y., Farquhar, J., Desain, P., Single trial classification of perceived and imagined music from EEG (2009) Berlin BCI Workshop, , Berlin, Germany
dc.descriptionVlek, R.J., Schaefer, R.S., Gielen, C.C.A.M., Farquhar, J.D.R., Desain, P., Sequenced subjective accents for brain-computer interfaces (2011) Journal of Neural Engineering, 8, p. 11. , Article ID 036002
dc.descriptionKlonowski, W., Duch, W., Perovic, A., Jovanovic, A., Some computational aspects of the brain computer interfaces based on inner music (2009) Computational Intelligence and Neuroscience, 2009, p. 9. , Article ID 950403
dc.descriptionMiranda, E.R., Magee, W.L., Wilson, J.J., Eaton, J., Palaniappan, R., Brain-computer music interfacing (BCMI): From basic research to the real world of special needs (2011) Music and Medicine, 3 (3), pp. 134-140
dc.descriptionDavies, D.L., Bouldin, D.W., A cluster separation measure (1979) IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1 (2), pp. 224-227
dc.descriptionMcFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R., Spatial filter selection for EEG-based communication (1997) Electroencephalography and Clinical Neurophysiology, 103, pp. 386-394
dc.descriptionDornhege, G., Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.-R., (2007) Toward Brain Computer Interfacing, , The MIT Press
dc.descriptionWolpaw, J., Wolpaw, E.W., (2012) Brain-Computer Interfaces: Principles and Practice, , Oxford University Press
dc.descriptionCoelho, G.P., Barbante, C.C., Boccato, L., Attux, R.R.F., Oliveira, J.R., Von Zuben, F.J., Automatic feature selection for BCI: An analysis using the davies-bouldin index and extreme learning machines (2012) Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), , Brisbane, Australia
dc.languageen
dc.publisher
dc.relationISSNIP Biosignals and Biorobotics Conference, BRC
dc.rightsfechado
dc.sourceScopus
dc.titleMusic Versus Motor Imagery For Bci Systems A Study Using Fmri And Eeg: Preliminary Results
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución