dc.creatorMaturana L.G.
dc.creatorPierucci A.
dc.creatorSimoes G.F.
dc.creatorVidigal M.
dc.creatorDuek E.A.R.
dc.creatorVidal B.C.
dc.creatorOliveira A.L.R.
dc.date2013
dc.date2015-06-25T19:10:56Z
dc.date2015-11-26T15:08:27Z
dc.date2015-06-25T19:10:56Z
dc.date2015-11-26T15:08:27Z
dc.date.accessioned2018-03-28T22:18:50Z
dc.date.available2018-03-28T22:18:50Z
dc.identifier
dc.identifierBrain And Behavior. , v. 3, n. 4, p. 417 - 430, 2013.
dc.identifier21623279
dc.identifier10.1002/brb3.145
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84893475220&partnerID=40&md5=3b4641316f37dd45494e77b190b585d0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88574
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88574
dc.identifier2-s2.0-84893475220
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257664
dc.descriptionThe purpose of this study was to investigate the influence of implanting collagen with a supramolecular organization on peripheral nerve regeneration, using the sciatic nerve tubulization technique. For this purpose, adult female Sprague Dawley rats were divided into five groups: (1) TP - sciatic nerve repaired with empty polyethylene tubular prothesis (n = 10), (2) TPCL - nerve repair with empty polycaprolactone (PCL) tubing (n = 8), (3) TPCLF - repair with PCL tubing filled with an implant of collagen with a supramolecular organization (n = 10), (4) AG - animals that received a peripheral nerve autograft (n = 8), and (5) Normal nerves (n = 8). The results were assessed by quantification of the regenerated fibers, nerve morphometry, and transmission electron microscopy, 60 days after surgery. Immunohistochemistry and polarization microscopy were also used to analyze the regenerated nerve structure and cellular elements. The results showed that the AG group presented a larger number of regenerated axons. However, the TPCL and TPCLF groups presented more compact regenerated fibers with a morphometric profile closer to normal, both at the tube midpoint and 2 mm distal to the prosthesis. These findings were reinforced by polarization microscopy, which indicated a better collagen/axons suprastructural organization in the TPCLF derived samples. In addition, the immunohistochemical results obtained using the antibody anti-p75NTR as a Schwann cell reactivity marker demonstrated that the Schwann cells were more reactive during the regenerative process in the TPCLF group as compared to the TPCL group and the normal sciatic nerve. Altogether, the results of this study indicated that the implant of collagen with a supramolecular organization positively influenced and stimulated the regeneration process through the nerve gap, resulting in the formation of a better morphologically arranged tissue. © 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
dc.description3
dc.description4
dc.description417
dc.description430
dc.descriptionAlluin, O., Wittmann, C., Marqueste, T., Chabas, J.F., Garcia, S., Lavaut, M.N., Functional recovery after peripheral nerve injury and implantation of a collagen guide (2009) Biomaterials, 30, pp. 363-373
dc.descriptionBadylak, S.F., Freytes, D.O., Gilbert, T.W., Extracellular matrix as a biological scaffold material: structure and function (2009) Acta Biomater., 5, pp. 1-13
dc.descriptionCeballos, D., Navarro, X., Dubey, N., Wendelschafer-grabb, G., Kennedy, W.R., Tranquillo, R.T., Magnetically aligned collagen gel filling a collagen nerve guide improve peripheral nerve regeneration (1999) Exp. Neurol., 158, pp. 290-300
dc.descriptionDubey, N., Letourneau, P.C., Tranquillo, R.T., Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration (1999) Exp. Neurol., 158, pp. 338-350
dc.descriptionEvans, G.R., Brandt, K., Widmer, M.S., Lu, L., Meszlenyi, R.K., Gupta, P.K., In vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration (1999) Biomaterials, 20, pp. 1109-1115
dc.descriptionFields, R.D., Le Beau, J.M., Longo, F.M., Ellisman, M.H., Nerve regeneration through artificial tubular implants (1989) Prog. Neurobiol., 33, pp. 87-134
dc.descriptionHadlock, T., Sundback, C., Hunter, D., Cheney, M., Vacanti, J.P., A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration (2000) Tissue Eng., 6, pp. 119-127
dc.descriptionKarlsson, M., Johansson, F., Kanje, M., Polystyrene replicas of neuronal basal lamina act as excellent guides for regenerating neurites (2011) Acta Biomater., 7, pp. 2910-2918
dc.descriptionKeilhoff, G., Stang, F., Wolf, G., Fansa, H., Bio- compatibility of type I/III collagen matrix for peripheral nerve reconstruction (2003) Biomaterials, 24, pp. 2779-2787
dc.descriptionKijeńska, E., Prabhakaran, M.P., Swieszkowski, W., Kurzydlowski, K.J., Ramakrishna, S., Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering (2012) J. Biomed. Mater. Res. B Appl. Biomater., 100, pp. 1093-1102
dc.descriptionLabrador, R.O., Butí, M., Navarro, X., Influence of collagen and laminin gels concentration nerve regeneration after resection and tube repair (1998) Exp. Neurol., 149, pp. 243-252
dc.descriptionLohmeyer, J.A., Siemers, F., Machens, H.G., Mailänder, P., The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review (2009) J. Reconstr. Microsurg., 25, pp. 55-61
dc.descriptionLu, Q., Simionescu, A., Vyavahare, N., Novel capillary channel fiber scaffolds for guided tissue engineering (2005) Acta Biomater., 1, pp. 607-614
dc.descriptionLundborg, G., Rosen, B., Abrahamson, S.O., Dahlin, L., Danielsen, N., Tubular repair of the median nerve in the human forearm. Preliminary findings (1994) J. Hand Surg., 19, pp. 273-276
dc.descriptionLundborg, G., Rosen, L., Dahlin, L., Holmberg, J., Rosen, I., Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up (2004) J. Hand Surg., 29, pp. 100-107
dc.descriptionMayhew, T.M., Sharma, A.K., Sampling schemes for estimating nerve fibre size. II. Methods for unifascicular nerve trunks (1984) J. Anat., 139, pp. 59-66
dc.descriptionOliveira, A.L.R., Pierucci, A., Pereira, K.B., Review: peripheral nerve through the nerve tubulization technique (2004) Braz. J. Morphol. Sci., 21, pp. 225-231
dc.descriptionOliveira, A.L.R., Vidal, B.C., Langone, F., Naturally supraorganized collagen increases axonal regeneration after tubulization repair (2005) Braz. J. Morphol. Sci., 22, pp. 143-148
dc.descriptionPierucci, A., Duek, E.A.R., Oliveira, A.L.R., Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation (2008) Tissue Eng., 14, pp. 595-606
dc.descriptionPierucci, A., Duek, E.A.R., Oliveira, A.L.R., Expression of basal lamina components by Schwann cells cultured on poly (lactic acid) (PLLA) and poly (caprolactone) (PCL) membranes (2009) J. Mater. Sci. Mater. Med., 20, pp. 489-495
dc.descriptionRibeiro-Resende, V.T., Koenig, B., Nichterwitz, S., Oberhoffner, S., Schlosshauer, B., Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration (2009) Biomaterials, 30, pp. 5251-5259
dc.descriptionVerdú, E., Labrador, R.O., Rodríguez, F.J., Ceballos, D., Forés, J., Navarro, X., Alignment of collagen and laminin-containing gels improve nerve regeneration within silicone tubes (2002) Restor. Neurol. Neurosci., 20, pp. 169-179
dc.descriptionVidal, B.C., From collagen type I solution to fibers with helical pattern: a self assemble phenomenon (1995) C. R. Acad. Sci. III, 318, pp. 821-836
dc.descriptionVidal, B.C., Image analysis for tendon helical superstructure using interference and polarized light microscopy (2003) Micron, 34, pp. 423-432
dc.descriptionVidal, B.C., Form birefringence as applied to biopolymer and inorganic material supraorganization (2010) Biotech. Histochem., 85, pp. 362-378
dc.descriptionVidal, B.C., Mello, M.L.S., Structural of collagen fibers in chordate tendineae as assessed by optical anisotropic properties and fast fourier transform (2009) J. Struct. Biol., 167, pp. 166-175
dc.descriptionVidal, B.C., Mello, M.L.S., Optical anisotropy of collagen fibers of rat calcaneal tendons: an approach to spatially resolved supramolecular organization (2010) Acta Histochem., 112, pp. 53-61
dc.descriptionVidal, B.C., Mello, M.L.S., Caseiro-Filho, A.C., Godo, C., Anisotropic properties of the myelin sheath (1980) Acta Histochem., 66, pp. 32-39
dc.descriptionWang, C.Y., Liu, J.J., Fan, C.Y., Mo, X.M., Ruan, H.J., Li, F.F., The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration (2012) J. Biomater. Sci. Polym. Ed., 23, pp. 167-184
dc.descriptionYannas, I.V., Hill, B.J., Selection of biomaterials for peripheral nerve regeneration using data from the nerve chamber model (2004) Biomaterials, 25, pp. 1593-1600
dc.descriptionYow, S.Z., Quek, C.H., Yim, E.K., Lim, C.T., Leong, K.W., Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells (2009) Biomaterials, 30, pp. 1133-1142
dc.languageen
dc.publisher
dc.relationBrain and Behavior
dc.rightsfechado
dc.sourceScopus
dc.titleEnhanced Peripheral Nerve Regeneration By The Combination Of A Polycaprolactone Tubular Prosthesis And A Scaffold Of Collagen With Supramolecular Organization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución