dc.creatorKrueger E.
dc.creatorScheeren E.M.
dc.creatorNogueira-Neto G.N.
dc.creatorNeves E.B.
dc.creatorda Silveira Nantes Button V.L.
dc.creatorNohama P.
dc.date2013
dc.date2015-06-25T19:10:53Z
dc.date2015-11-26T15:08:24Z
dc.date2015-06-25T19:10:53Z
dc.date2015-11-26T15:08:24Z
dc.date.accessioned2018-03-28T22:18:46Z
dc.date.available2018-03-28T22:18:46Z
dc.identifier
dc.identifierBiomedical Engineering Letters. Springer Verlag, v. 3, n. 1, p. 1 - 7, 2013.
dc.identifier20939868
dc.identifier10.1007/s13534-013-0082-2
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84892989326&partnerID=40&md5=1383615ee8d0a9accb21aea5b066976e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88561
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88561
dc.identifier2-s2.0-84892989326
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257655
dc.descriptionPurpose: In the present study, five FES profiles were compared in order to find the best combination of activeperiod and burst frequency that might artificially sustain muscle contraction for the longest time with the lowest knee joint variation. Methods: Spinal cord injured volunteers (N=10) participated in this study. The frequency of each FES profile was 1 kHz with variable pulse active period (100 μs or 200 μs) and pulse inactive period (900 μs or 800 μs). The setup burst frequencies had either 50 Hz (3 ms active time and 17 ms rest time) or 70 Hz (3 ms active time and 11 ms rest time). Results: The best results were obtained to FES profiles P2 (burst frequency of 70 Hz and pulse active period of 100 μs), P3 (burst frequency of 50 Hz and pulse active period of 200 μs) and P4 (burst frequency of 70 Hz and pulse active period of 200 μs). Conclusions: In order to maintain the SCIV's knee angle with minimal variation, the best results occurred with the application of P2, P3 and P4 FES profiles. © 2013 Korean Society of Medical and Biological Engineering and Springer.
dc.description3
dc.description1
dc.description1
dc.description7
dc.descriptionYu, N.Y., Chang, S.H., The characterization of contractile and myoelectric activities in paralyzed tibialis anterior post electrically elicited muscle fatigue (2010) Artif Organs., 34 (4), pp. E117-E121
dc.descriptionSchearer, E.M., Liao, Y.-W., Perreault, E.J., Tresch, M.C., Lynch, K.M., Optimal sampling of recruitment curves for functional electrical stimulation control (2012) Annu Int Conf IEEE Eng Med Biol Soc, pp. 1-4. , editors
dc.descriptionEnoka, R.M., Duchateau, J., Muscle fatigue: what, why and how it influences muscle function (2008) J Physiol., 586 (1), pp. 11-23
dc.descriptionKernell, D., Monster, A.W., Motoneurone properties and motor fatigue (1982) Exp Brain Res., 46 (2), pp. 197-204
dc.descriptionXia, T., Frey Law, L.A., A theoretical approach for modeling peripheral muscle fatigue and recovery (2008) J Biomech., 41 (14), pp. 3046-3052
dc.descriptionMatsunaga, T., Shimada, Y., Sato, K., Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses (1999) Arch Phys Med Rehab., 80 (1), pp. 48-53
dc.descriptionThrasher, A., Graham, G.M., Popovic, M.R., Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters (2005) Artif Organs., 29 (6), pp. 453-458
dc.descriptionHodgkin, A.L., Huxley, A.F., The dual effect of membrane potential on sodium conductance in the giant axon of Loligo (1952) J Physiol., 116 (4), pp. 497-506
dc.descriptionKernell, D., Monster, A.W., Time course and properties of late adaptation in spinal motoneurones of the cat (1982) Exp Brain Res., 46 (2), pp. 191-196
dc.descriptionFisekovic, N., Popovic, D.B., New controller for functional electrical stimulation systems (2001) Med Eng Phys., 23 (6), pp. 391-399
dc.descriptionLepers, R., Maffiuletti, N.A., Rochette, L., Brugniaux, J., Millet, G.Y., Neuromuscular fatigue during a long-duration cycling exercise (2002) J Appl Physiol., 92 (4), pp. 1487-1493
dc.descriptionKrueger-Beck, E., Scheeren, E., Nogueira-Neto, G.N., Button, V.L.S.N., Nohama, P., Optimal FES parameters based on mechanomyographic efficiency index (2010) Annu Int Conf IEEE Eng Med Biol Soc, pp. 1378-1381. , editors
dc.descriptionBailey, S.N., Hardin, E.C., Kobetic, R., Boggs, L.M., Pinault, G., Triolo, R.J., Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury (2010) J Rehabil Res Dev., 47 (1), pp. 7-16
dc.descriptionBaptista, R.R., Scheeren, E.M., Macintosh, B.R., Vaz, M.A., Lowfrequency fatigue at maximal and submaximal muscle contractions (2009) Brazilian J Med Biol Res., 42, pp. 380-385
dc.descriptionFujita, K., Handa, Y., Hoshimiya, N., Ichie, M., Stimulus adjustment protocol for FES-induced standing in paraplegiausing percutaneous intramuscular electrodes (1995) IEEE T Rehabil Eng., 3 (4), pp. 360-366
dc.descriptionGollee, H., Hunt, K.J., Wood, D.E., New results in feedback control of unsupported standing in paraplegia (2004) IEEE T Neural Syst Rehabil Eng., 12 (1), pp. 73-80
dc.descriptionJezernik, S., Wassink, R.G.V., Keller, T., Sliding mode closed-loop control of FES: controlling the shank movement (2004) IEEE T Biomed Eng., 51 (2), pp. 263-272
dc.descriptionLangzam, E., Nemirovsky, Y., Isakov, E., Mizrahi, J., Muscle enhancement using closed-loop electrical stimulation: Volitional versus induced torque (2007) J Electromyogr Kines., 17 (3), pp. 275-284
dc.descriptionMarsolais, E.B., Kobetic, R., Functional electrical stimulation for walking in paraplegia (1987) J Bone Joint Surg., 69 (5), pp. 728-733
dc.descriptionMarsolais, E.B., Kobetic, R., Development of a practical electrical stimulation system for restoring gait in the paralyzed patient (1988) Clin Orthop Relat R., 233, pp. 64-74
dc.descriptionMcAndrew, D.J., Rosser, N.A.D., Brown, J.M.M., Mechanomyographic measures of muscle contractile properties are influenced by the duration of the stimulatory pulse (2006) J Appl Res., 6 (1), pp. 142-152
dc.descriptionThrasher, T.A., Flett, H.M., Popovic, M.R., Gait training regimen for incomplete spinal cord injury using functional electrical stimulation (2006) Spinal Cord., 44 (6), pp. 357-361
dc.descriptionPetrofsky, J.S., Electrical stimulation: neurophysiological basis and application (2004) Basic Appl Myol., 14 (4), pp. 205-213
dc.descriptionMerrill, D.R., Bikson, M., Jefferys, J.G.R., Electrical stimulation of excitable tissue: design of efficacious and safe protocols (2005) J Neurosci Med., 141 (2), pp. 171-198
dc.descriptionKrueger-Beck, E., Scheeren, E., Nogueira-Neto, G.N., Neves, E.B., Button, V.L.S.N., Nohama, P., Time and angular variations in different neuromuscular electrical stimulation profiles (2010) Twentysecond (XXII) Brazilian Congress of Biomedical Engineering, pp. 1434-1437. , editors
dc.descriptionZagheni, A.L., (1998) Neuromuscular Electrical Stimulation Multichannel System Controlled by Computer for Applications in Artificial Locomotion [M.Sc Thesis], , Curitiba.: Federal Technological University of Paraná
dc.descriptionBronzino, J.D., (1992) Management of Medical Technology: A Primer for Clinical Engineers, , Boston, USA: Butterworth-Heinemann
dc.descriptionRabischong, E., Surface action potentials related to torque output in paraplegics' electrically stimulated quadriceps muscle (1996) Med Eng Phys., 18 (7), pp. 538-547
dc.descriptionRatkevièius, A., Skurvydas, A., Povilonis, E., Quistorff, B., Lexell, J., Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans (1998) Eur J Appl Physiol O., 77 (5), pp. 462-468
dc.descriptionKesar, T., Chou, L.W., Binder-Macleod, S.A., Effects of stimulation frequency versus pulse duration modulation on muscle fatigue (2008) J Electromyogr Kines., 18 (4), pp. 662-671
dc.descriptionMarion, M.S., Wexler, A.S., Hull, M.L.P., redicting fatigue during electrically stimulated non-isometric contractions (2010) Muscle Nerve., 41 (6), pp. 857-867
dc.descriptionFranken, H.M., Veltink, P.H., Fidder, M., Boom, H.B.K., Fatigue of intermittently stimulated paralyzed human quadriceps during imposed cyclical lower leg movements (1993) J Electromyogr Kines., 3 (1), pp. 3-12
dc.descriptionTalmadge, R.J., Castro, M.J., Apple, D.F., Dudley, G.A., Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury (2002) J Appl Physiol., 92 (1), p. 147
dc.descriptionDitor, D.S., Hamilton, S., Tarnopolsky, M.A., Green, H.J., Craven, B.C., Parise, G., Na+, K+ ATPase concentration and fiber type distribution after spinal cord injury (2004) Muscle Nerve., 29 (1), pp. 38-45
dc.descriptionGobbo, M., Cè, E., Diemont, B., Esposito, F., Orizio, C., Torque and surface mechanomyogram parallel reduction during fatiguing stimulation in human muscles (2006) Eur J Appl Physiol O., 97 (1), pp. 9-15
dc.descriptionAndersen, J.L., Gruschy-Knudsen, T., Sandri, C., Larsson, L., Schiaffino, S., Bed rest increases the amount of mismatched fibers in human skeletal muscle (1999) J Appl Physiol., 86 (2), pp. 455-460
dc.descriptionBurnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., Steadward, R., Skeletal muscle fibre type transformation following spinal cord injury (1997) Spinal Cord., 35 (2), pp. 86-91
dc.descriptionChou, L.W., Ding, J., Wexler, A.S., Binder-Macleod, S.A., Predicting optimal electrical stimulation for repetitive human muscle activation (2005) J Electromyogr Kines., 15 (3), pp. 300-309
dc.descriptionKaczmarek, P., Huber, J., Lisiski, P., Witkowska, A., Kasiski, A., Investigation of the relationship between stimulus parameters and a human muscle contraction force during stimulation of the gastrocnemius muscle (2009) Artif Organs., 34 (2), pp. 126-135
dc.descriptionKesar, T., Binder-Macleod, S., Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation (2006) Exp Physiol., 91 (6), pp. 967-976
dc.descriptionBiering-Sorensen, B., Kristensen, I.B., Kjaer, M., Biering-Sorensen, F., Muscle after spinal cord injury (2009) Muscle Nerve., 40 (4), pp. 499-519
dc.descriptionWard, A.R., Robertson, V.J., Variation in torque production with frequency using medium frequency alternating current* 1,* 2 (1998) Arch Phys Med Rehab., 79 (11), pp. 1399-1404
dc.descriptionMaynard, F.M., Bracken, M.B., Creasey, G., Ditunno, J.F., Donovan, W.H., Ducker, T.B., International standards for neurological and functional classification of spinal cord injury (1997) Spinal Cord., 35 (5), pp. 266-274
dc.descriptionCipriano, J.J., (2003) Photographic Manual of Regional Orthopaedic and Neurological Tests, , 4 edth edn., Atlanta, Georgia: Lippincott Williams & Wilkins
dc.descriptionBohannon, R.W., Smith, M., Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity (1987) Phys Ther., 67 (2), pp. 206-207
dc.languageen
dc.publisherSpringer Verlag
dc.relationBiomedical Engineering Letters
dc.rightsfechado
dc.sourceScopus
dc.titleAnalysis Of Functional Electrical Stimulation Parameters By Muscular Contraction Time And Knee Joint Angular Variation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución