dc.creatorDe Moraes M.A.
dc.creatorCrouzier T.
dc.creatorRubner M.
dc.creatorBeppu M.M.
dc.date2015
dc.date2015-06-25T12:53:21Z
dc.date2015-11-26T15:08:23Z
dc.date2015-06-25T12:53:21Z
dc.date2015-11-26T15:08:23Z
dc.date.accessioned2018-03-28T22:18:46Z
dc.date.available2018-03-28T22:18:46Z
dc.identifier
dc.identifierBiomacromolecules. American Chemical Society, v. 16, n. 1, p. 97 - 104, 2015.
dc.identifier15257797
dc.identifier10.1021/bm5012135
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921029405&partnerID=40&md5=b9d9c04db06369795960640b099e5663
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85456
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85456
dc.identifier2-s2.0-84921029405
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257654
dc.descriptionThe layer-by-layer technique has been used as a powerful method to produce multilayer thin films with tunable properties. When natural polymers are employed, complicated phenomena such as self-aggregation and fibrilogenesis can occur, making it more difficult to obtain and characterize high-quality films. The weak acid and base character of such materials provides multilayer systems that may differ from those found with synthetic polymers due to strong self-organization effects. Specifically, LbL films prepared with chitosan and silk fibroin (SF) often involve the deposition of fibroin fibrils, which can influence the assembly process, surface properties, and overall film functionality. In this case, one has the intriguing possibility of realizing multilayer thin films with aligned nanofibers. In this article, we propose a strategy to control fibroin fibril formation by adjusting the assembly partner. Aligned fibroin fibrils were formed when chitosan was used as the counterpart, whereas no fibrils were observed when poly(allylamine hydrochloride) (PAH) was used. Charge density, which is higher in PAH, apparently stabilizes SF aggregates on the nanometer scale, thereby preventing their organization into fibrils. The drying step between the deposition of each layer was also crucial for film formation, as it stabilizes the SF molecules. Preliminary cell studies with optimized multilayers indicated that cell viability of NIH-3T3 fibroblasts remained between 90 and 100% after surface seeding, showing the potential application of the films in the biomedical field, as coatings and functional surfaces. (Figure Presented).
dc.description16
dc.description1
dc.description97
dc.description104
dc.descriptionStockton, W.B., Rubner, M.F., Molecular-level processing of conjugated polymers 0.4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions (1997) Macromolecules, 30, pp. 2717-2725
dc.descriptionKotov, N.A., Layer-by-layer self-assembly: The contribution of hydrophobic interactions (1999) Nanostruct. Mater., 12, pp. 789-796
dc.descriptionZhang, Y.J., Yang, S.G., Guan, Y., Cao, W.X., Xu, J., Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly (2003) Macromolecules, 36, pp. 4238-4240
dc.descriptionDecher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites (1997) Science, 277, pp. 1232-1237
dc.descriptionWang, X.Y., Kim, H.J., Xu, P., Matsumoto, A., Kaplan, D.L., Biomaterial coatings by stepwise deposition of silk fibroin (2005) Langmuir, 21, pp. 11335-11341
dc.descriptionJiang, C.Y., Wang, X.Y., Gunawidjaja, R., Lin, Y.H., Gupta, M.K., Kaplan, D.L., Naik, R.R., Tsukruk, V.V., Mechanical properties of robust ultrathin silk fibroin films (2007) Adv. Funct. Mater., 17, pp. 2229-2237
dc.descriptionShchepelina, O., Drachuk, I., Gupta, M.K., Lin, J., Tsukruk, V.V., Silk-on-silk layer-by-layer microcapsules (2011) Adv. Mater., 23, pp. 4655-4660
dc.descriptionKozlovskaya, V., Baggett, J., Godin, B., Liu, X., Kharlampieva, E., Hydrogen-bonded multilayers of silk fibroin: From coatings to cell-mimicking shaped microcontainers (2012) Acs Macro Lett., 1, pp. 384-387
dc.descriptionCai, K., Hu, Y., Jandt, K.D., Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior (2007) J. Biomed. Mater. Res., Part A, 82 A, pp. 927-935
dc.descriptionNogueira, G.M., Swiston, A.J., Beppu, M.M., Rubner, M.F., Layer-by-layer deposited chitosan/silk fibroin thin films with anisotropic nanofiber alignment (2010) Langmuir, 26, pp. 8953-8958
dc.descriptionCooper, A., Jana, S., Bhattarai, N., Zhang, M., Aligned chitosan-based nanofibers for enhanced myogenesis (2010) J. Mater. Chem., 20, pp. 8904-8911
dc.descriptionPelaez-Vargas, A., Gallego-Perez, D., Ferrell, N., Fernandes, M.H., Hansford, D., Monteiro, F.J., Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping (2010) Microsc. Microanal., 16, pp. 670-676
dc.descriptionLu, Q., Zhu, H., Zhang, C., Zhang, F., Zhang, B., Kaplan, D.L., Silk self-assembly mechanisms and control from thermodynamics to kinetics (2012) Biomacromolecules, 13, pp. 826-832
dc.descriptionGreving, I., Cai, M., Vollrath, F., Schniepp, H.C., Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy (2012) Biomacromolecules, 13, pp. 676-682
dc.descriptionJin, H.J., Kaplan, D.L., Mechanism of silk processing in insects and spiders (2003) Nature, 424, pp. 1057-1061
dc.descriptionChen, P., Kim, H.S., Park, C.Y., Chin, I.J., Jin, H.J., pH-triggered transition of silk fibroin from spherical micelles to nanofibrils in water (2008) Macromol. Res., 16, pp. 539-543
dc.descriptionGong, Z., Huang, L., Yang, Y., Chen, X., Shao, Z., Two distinct beta-sheet fibrils from silk protein (2009) Chem. Commun., 48, pp. 7506-7508
dc.descriptionPayne, G.F., Raghavan, S.R., Chitosan: A soft interconnect for hierarchical assembly of nano-scale components (2007) Soft Matter, 3, pp. 521-527
dc.descriptionChoi, J., Rubner, M.F., Influence of the degree of ionization on weak polyelectrolyte multilayer assembly (2005) Macromolecules, 38, pp. 116-124
dc.descriptionVasconcellos, F.C., Swiston, A.J., Beppu, M.M., Cohen, R.E., Rubner, M.F., Bioactive polyelectrolyte multilayers: Hyaluronic acid mediated B lymphocyte adhesion (2010) Biomacromolecules, 11, pp. 2407-2414
dc.descriptionLee, D., Rubner, M.F., Cohen, R.E., All-nanoparticle thin-film coatings (2006) Nano Lett, 6, pp. 2305-2312
dc.descriptionLee, H., Mensire, R., Cohen, R.E., Rubner, M.F., Strategies for hydrogen bonding based layer-by-layer assembly of poly(vinyl alcohol) with weak polyacids (2012) Macromolecules, 45, pp. 347-355
dc.descriptionLi, G.Y., Zhou, P., Shao, Z.Z., Xie, X., Chen, X., Wang, H.H., Chunyu, L.J., Yu, T.Y., The natural silk spinning process - A nucleation-dependent aggregation mechanism? (2001) Eur. J. Biochem., 268, pp. 6600-6606
dc.descriptionRichert, L., Lavalle, P., Payan, E., Shu, X.Z., Prestwich, G.D., Stoltz, J.F., Schaaf, P., Picart, C., Layer by layer buildup of polysaccharide films: Physical chemistry and cellular adhesion aspects (2004) Langmuir, 20, pp. 448-458
dc.descriptionSvensson, O., Lindh, L., Cardenas, M., Arnebrant, T., Layer-by-layer assembly of mucin and chitosan - Influence of surface properties, concentration and type of mucin (2006) J. Colloid Interface Sci., 299, pp. 608-616
dc.descriptionJin, H.J., Park, J., Valluzzi, R., Cebe, P., Kaplan, D.L., Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide) (2004) Biomacromolecules, 5, pp. 711-717
dc.descriptionAmornsudthiwat, P., Mongkolnavin, R., Kanokpanont, S., Panpranot, J., Wong, C.S., Damrongsakkul, S., Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma (2013) Colloids Surf., B, 111, pp. 579-586
dc.descriptionLee, J.-H., Hwang, H.J., Bhak, G., Jang, Y., Paik, S.R., Char, K., In situ fibril formation of kappa-casein by external stimuli within multilayer thin films (2013) Acs Macro Lett., 2, pp. 688-693
dc.descriptionYan, X., Zhu, P., Li, J., Self-assembly and application of diphenylalanine-based nanostructures (2010) Chem. Soc. Rev., 39, pp. 1877-1890
dc.descriptionHwang, W., Kim, B.-H., Dandu, R., Cappello, J., Ghandehari, H., Seog, J., Surface induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer (2009) Langmuir, 25, pp. 12682-12686
dc.descriptionUm, I.C., Kweon, H.Y., Park, Y.H., Hudson, S., Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid (2001) Int. J. Biol. Macromol., 29, pp. 91-97
dc.descriptionQiang, L., Cao, C.B., Zhang, Y., Man, X.L., Zhu, H.S., The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres (2004) J. Mater. Sci.: Mater. Med., 15, pp. 1193-1197
dc.descriptionNogueira, G.M., Rodas, A.C.D., Leite, C.A.P., Giles, C., Higa, O.Z., Polakiewicz, B., Beppu, M.M., Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material (2010) Bioresour. Technol., 101, pp. 8446-8451
dc.descriptionKawahara, Y., Furukawa, K., Yamamoto, T., Self-expansion behavior of silk fibroin film (2006) Macromol. Mater. Eng., 291, pp. 458-462
dc.descriptionJin, H.J., Park, J., Karageorgiou, V., Kim, U.J., Valluzzi, R., Kaplan, D.L., Water-stable silk films with reduced beta-sheet content (2005) Adv. Funct. Mater., 15, pp. 1241-1247
dc.languageen
dc.publisherAmerican Chemical Society
dc.relationBiomacromolecules
dc.rightsfechado
dc.sourceScopus
dc.titleFactors Controlling The Deposition Of Silk Fibroin Nanofibrils During Layer-by-layer Assembly
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución