dc.creatorGallesco C.
dc.creatorPopov S.
dc.date2013
dc.date2015-06-25T19:10:35Z
dc.date2015-11-26T15:08:07Z
dc.date2015-06-25T19:10:35Z
dc.date2015-11-26T15:08:07Z
dc.date.accessioned2018-03-28T22:18:32Z
dc.date.available2018-03-28T22:18:32Z
dc.identifier
dc.identifierAlea. , v. 10, n. 1, p. 253 - 270, 2013.
dc.identifier19800436
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877072536&partnerID=40&md5=28cf718c8adae94737cb7ad67eb5d703
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88528
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88528
dc.identifier2-s2.0-84877072536
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257608
dc.descriptionWe study a one-dimensional random walk among random conductances, with unbounded jumps. Assuming the ergodicity of the collection of conductances and a few other technical conditions (uniform ellipticity and polynomial bounds on the tails of the jumps) we prove a quenched conditional invariance principle for the random walk, under the condition that it remains positive until time n. As a corollary of this result, we study the effect of conditioning the random walk to exceed level n before returning to 0 as n →∞.
dc.description10
dc.description1
dc.description253
dc.description270
dc.descriptionBelkin, B., An invariance principle for conditioned recurrent random walk attracted to a stable law (1972) Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 21, pp. 45-64. , MR0309200
dc.descriptionBertoin, J., Doney, R.A., On conditioning a random walk to stay nonnegative (1994) Ann. Probab., 22 (4), pp. 2152-2167. , MR1331218
dc.descriptionBiane, Ph., Yor, M., Quelques précisions sur le méandre brownien (1988) Bull. Sci. Math., 112 (1-2), pp. 101-109. , MR942801
dc.descriptionBolthausen, E., On a functional central limit theorem for random walks conditioned to stay positive (1976) Ann. Probability, 4 (3), pp. 480-485. , MR0415702
dc.descriptionCaravenna, F., A local limit theorem for random walks conditioned to stay positive (2005) Probab. Theory Related Fields, 133 (4), pp. 508-530. , MR2197112
dc.descriptionCaravenna, F., Chaumont, L., Invariance principles for random walks conditioned to stay positive (2008) Ann. Inst. Henri Poincaré Probab. Stat., 44 (1), pp. 170-190. , MR2451576
dc.descriptionComets, F., Popov, S., Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards (2012) Ann. Inst. Henri Poincaré Probab. Stat., 48 (3), pp. 721-744. , MR2976561
dc.descriptionComets, F., Popov, S., Schütz, G.M., Vachkovskaia, M., Quenched invariance principle for the Knudsen stochastic billiard in a random tube (2010) Ann. Probab., 38 (3), pp. 1019-1061. , MR2674993
dc.descriptionComets, F., Popov, S., Schütz, G.M., Vachkovskaia, M., Billiards in a general domain with random reflections (2009) Arch. Ration. Mech. Anal., 191 (3), pp. 497-537. , MR2481068
dc.descriptionComets, F., Popov, s., Schütz, G.M., Vachkovskaia, M., Knudsen gas in a finite random tube: transport diffusion and first passage properties (2010) J. Stat. Phys., 140 (5), pp. 948-984. , MR2673342
dc.descriptionCooper, R.B., (1981) Introduction to queueing theory, , North-Holland Publishing Co., New York, second edition, ISBN 0-444-00379-7. MR636094
dc.descriptionDoyle, P.G., Snell, J.L., Random walks and electric networks (1984) Carus Mathematical Monographs, 22. , Mathematical Association of America, Washington, DC, ISBN 0-88385-024-9. MR920811
dc.descriptionDurrett, R., Conditioned limit theorems for some null recurrent Markov processes (1978) Ann. Probab., 6 (5), pp. 798-828. , MR503953
dc.descriptionGallesco, C., Popov, s., Random walks with unbounded jumps among random conductances I: Uniform quenched CLT (2012) Electron. J. Probab., 17 (85), p. 22. , MR2988400
dc.descriptionIglehart, D.L., Functional central limit theorems for random walks conditioned to stay positive (1974) Ann. Probability, 2, pp. 608-619. , MR0362499
dc.descriptionImhof, J.-P., Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications (1984) J. Appl. Probab., 21 (3), pp. 500-510. , MR752015
dc.descriptionMörters, P., Peres, Y., (2010) Brownian motion, , Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, ISBN 978-0-521-76018-8. With an appendix by Oded Schramm and Wendelin Werner. MR2604525
dc.descriptionRevuz, D., Yor, M., Continuous martingales and Brownian motion (1999) Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. , Springer-Verlag, Berlin, third edition, ISBN 3-540-64325-7. MR1725357
dc.descriptionVatutin, V.A., Wachtel, V., Local probabilities for random walks conditioned to stay positive (2009) Probab. Theory Related Fields, 143 (1-2), pp. 177-217. , MR2449127
dc.languageen
dc.publisher
dc.relationAlea
dc.rightsfechado
dc.sourceScopus
dc.titleRandom Walks With Unbounded Jumps Among Random Conductances Ii: Conditional Quenched Clt
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución