dc.creatorDias-Lopes C.
dc.creatorNeshich I.A.P.
dc.creatorNeshich G.
dc.creatorOrtega J.M.
dc.creatorGranier C.
dc.creatorChavez-Olortegui C.
dc.creatorMolina F.
dc.creatorFelicori L.
dc.date2013
dc.date2015-06-25T19:10:17Z
dc.date2015-11-26T15:07:56Z
dc.date2015-06-25T19:10:17Z
dc.date2015-11-26T15:07:56Z
dc.date.accessioned2018-03-28T22:18:23Z
dc.date.available2018-03-28T22:18:23Z
dc.identifier
dc.identifierPlos One. , v. 8, n. 11, p. - , 2013.
dc.identifier19326203
dc.identifier10.1371/journal.pone.0079240
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84891380008&partnerID=40&md5=c934cb7e86143ef91920e9fc94a119df
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88483
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88483
dc.identifier2-s2.0-84891380008
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257577
dc.descriptionSphingomyelinases D (SMases D) or dermonecrotic toxins are well characterized in Loxosceles spider venoms and have been described in some strains of pathogenic microorganisms, such as Corynebacterium sp. After spider bites, the SMase D molecules cause skin necrosis and occasional severe systemic manifestations, such as acute renal failure. In this paper, we identified new SMase D amino acid sequences from various organisms belonging to 24 distinct genera, of which, 19 are new. These SMases D share a conserved active site and a C-terminal motif. We suggest that the C-terminal tail is responsible for stabilizing the entire internal structure of the SMase D Tim barrel and that it can be considered an SMase D hallmark in combination with the amino acid residues from the active site. Most of these enzyme sequences were discovered from fungi and the SMase D activity was experimentally confirmed in the fungus Aspergillus flavus. Because most of these novel SMases D are from organisms that are endowed with pathogenic properties similar to those evoked by these enzymes alone, they might be associated with their pathogenic mechanisms. © 2013 Dias-Lopes et al.
dc.description8
dc.description11
dc.description
dc.description
dc.descriptionLucas, E.A., Billington, S.J., Carlson, P., McGee, D.J., Jost, B.H., Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion (2010) BMC Microbiol, 10, p. 270. , doi:10.1186/1471-2180-10-270. PubMed: 20973961
dc.descriptionMurakami, M.T., Fernandes-Pedrosa, M.F., Tambourgi, D.V., Arni, R.K., Structural basis for metal ion coordination and the catalytic mechanism of sphingomyelinases D (2005) J Biol Chem, 280, pp. 13658-13664. , doi:10.1074/jbc.M412437200. PubMed: 15654080
dc.descriptionLee, S., Lynch, K.R., Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA) (2005) Biochem J, 391, pp. 317-323. , doi:10.1042/BJ20050043. PubMed: 15926888
dc.descriptionTambourgi, D.V., Magnoli, F.C., Van Den Berg, C.W., Morgan, B.P., De Araujo, P.S., Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis (1998) Biochem Biophys Res Commun, 251, pp. 366-373. , doi:10.1006/bbrc.1998.9474. PubMed: 9790962
dc.descriptionTambourgi, D.V., Morgan, B.P., De Andrade, R.M., Magnoli, F.C., Van Den Berg, C.W., Loxosceles intermedia spider envenomation induces activation of an endogenous metalloproteinase, resulting in cleavage of glycophorins from the erythrocyte surface and facilitating complement-mediated lysis (2000) Blood, 95, pp. 683-691. , PubMed: 10627480
dc.descriptionTambourgi, D.V., De, F., Fernandes Pedrosa, M., Van Den Berg, C.W., Gonçalves-de-Andrade, R.M., Ferracini, M., Molecular cloning, expression, function and immunoreactivities of members of a gene family of sphingomyelinases from Loxosceles venom glands (2004) Mol Immunol, 41, pp. 831-840. , doi:10.1016/j.molimm.2004.03.027. PubMed: 15234562
dc.descriptionChaim, O.M., Sade, Y.B., Da Silveira, R.B., Toma, L., Kalapothakis, E., Brown spider dermonecrotic toxin directly induces nephrotoxicity (2006) Toxicol Appl Pharmacol, 211, pp. 64-77. , doi:10.1016/j.taap. 2005.05.015. PubMed: 16005484
dc.descriptionKusma, J., Chaim, O.M., Wille, A.C.M., Ferrer, V.P., Sade, Y.B., Nephrotoxicity caused by brown spider venom phospholipase-D (dermonecrotic toxin) depends on catalytic activity (2008) Biochimie, 90, pp. 1722-1736. , doi:10.1016/j.biochi.2008.07.011. PubMed: 18760322
dc.descriptionAlarcon-Chaidez, F.J., Boppana, V.D., Hagymasi, A.T., Adler, A.J., Wikel, S.K., A novel sphingomyelinase-like enzyme in Ixodes scapularis tick saliva drives host CD4 T cells to express IL-4 (2009) Parasite Immunol, 31, pp. 210-219. , doi:10.1111/j.1365-3024.2009.01095.x. PubMed: 19292772
dc.descriptionMcNamara, P.J., Cuevas, W.A., Songer, J.G., Toxic phospholipases D of Corynebacterium pseudotuberculosis, C. Ulcerans and Arcanobacterium haemolyticum: Cloning and sequence homology (1995) Gene, 156, pp. 113-118. , doi:10.1016/0378-1119(95)00002-N. PubMed: 7737503
dc.descriptionFry, B.G., Roelants, K., Champagne, D.E., Scheib, H., Tyndall, J.D.A., The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms (2009) Annu Rev Genomics Hum Genet, 10, pp. 483-511. , doi:10.1146/annurev.genom.9.081307.164356. PubMed: 19640225
dc.descriptionCordes, M.H.J., Binford, G.J., Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria (2006) Bioinformatics, 22, pp. 264-268. , doi:10.1093/bioinformatics/bti811. PubMed: 16332712
dc.descriptionAltschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402. , doi:10.1093/nar/25.17.3389. PubMed: 9254694
dc.descriptionBarthelmes, J., Ebeling, C., Chang, A., Schomburg, I., Schomburg, D., BRENDA, AMENDA and FRENDA: The enzyme information system in 2007 (2007) Nucleic Acids Res, 35, pp. D511-D514. , doi:10.1093/nar/gkl972. PubMed: 17202167
dc.descriptionHuang, X., Madan, A., CAP3: A DNA Sequence Assembly Program (1999) Genome Res, 9, pp. 868-877. , doi:10.1101/gr.9.9.868. PubMed: 10508846
dc.descriptionPapadopoulos, J.S., Agarwala, R., COBALT: Constraint-based alignment tool for multiple protein sequences (2007) Bioinformatics, 23, pp. 1073-1079. , doi:10.1093/bioinformatics/btm076. PubMed: 17332019
dc.descriptionWaterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M., Barton, G.J., Jalview version 2 a multiple sequence alignment editor and analysis workbench (2009) Bioinformatics, 25, pp. 1189-1191
dc.descriptionTamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 (2007) Mol Biol Evol, 24, pp. 1596-1599. , doi:10.1093/molbev/msm092. PubMed: 17488738
dc.descriptionJones, D.T., Taylor, W.R., Thornton, J.M., The rapid generation of mutation data matrices from protein sequences (1992) Comput Appl Biosci CABIOS, 8, pp. 275-282. , PubMed: 1633570
dc.descriptionCole, C., Barber, J.D., Barton, G.J., The Jpred 3 secondary structure prediction server (2008) Nucleic Acids Res, 36, pp. W197-W201. , doi:10.1093/nar/gkn238. PubMed: 18463136
dc.descriptionKrieger, E., Vriend, G., Elmar Krieger and Gert Vriend (2002) Bioinformatics, 18, pp. 315-318. , doi:10.1093/bioinformatics/18.2.315. PubMed: 11847079
dc.descriptionWiederstein, M., Sippl, M.J., ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins (2007) Nucleic Acids Res, 35, pp. W407-W410. , doi:10.1093/nar/gkl865. PubMed: 17517781
dc.descriptionNeshich, G., Rocchia, W., Mancini, A.L., Yamagishi, M.E.B., Kuser, P.R., JavaProtein Dossier: A novel web-based data visualization tool for comprehensive analysis of protein structure (2004) Nucleic Acids Res, 32, pp. W595-W601. , doi:10.1093/nar/gkh118. PubMed: 15215458
dc.descriptionNeshich, G., Mazoni, I., Oliveira, S.R.M., Yamagishi, M.E.B., Kuser-Falcão, P.R., The Star STING server: A multiplatform environment for protein structure analysis (2006) Genet Molecular Res GMR, 5, pp. 717-722
dc.descriptionKonagurthu, A.S., Whisstock, J.C., Stuckey, P.J., Lesk, A.M., MUSTANG: A multiple structural alignment algorithm (2006) Proteins, 64, pp. 559-574. , doi:10.1002/prot.20921. PubMed: 16736488
dc.descriptionGuex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723. , doi:10.1002/elps.1150181505. PubMed: 9504803
dc.descriptionNeshich, G., Mancini, A.L., Yamagishi, M.E.B., Kuser, P.R., Fileto, R., STING Report: Convenient web-based application for graphic and tabular presentations of protein sequence, structure and function descriptors from the STING database (2005) Nucleic Acids Res, 33, pp. D269-D274. , PubMed: 15608194
dc.descriptionMancini, A.L., Higa, R.H., Oliveira, A., Dominiquini, F., Kuser, P.R., STING Contacts: A web-based application for identification and analysis of amino acid contacts within protein structure and across protein interfaces (2004) Bioinformatics, 20, pp. 2145-2147. , doi:10.1093/bioinformatics/bth203. PubMed: 15073001
dc.descriptionFernandes, J.H., Hayashi, M., Camargo, A., Neshich, G., Structural basis of the lisinopril-binding specificity in N- and C-domains of human somatic ACE (2003) Biochem Biophys Res Commun, 308, pp. 533-539
dc.descriptionMarcellino, L.H., Neshich, G., Grossi De Sá, M.F., Krebbers, E., Gander, E.S., Modified 2S albumins with improved tryptophan content are correctly expressed in transgenic tobacco plants (1996) FEBS Lett, 385, pp. 154-158. , doi:10.1016/0014-5793(96)00375-4. PubMed: 8647241
dc.descriptionRibeiro, C., Togawa, R.C., Neshich, I.A., Mazoni, I., Mancini, A.L., Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors (2010) BMC Struct Biol, 10, p. 36. , doi: 10.1186/1472-6807-10-36. PubMed: 20961427
dc.descriptionSitkiewicz, I., Nagiec, M.J., Sumby, P., Butler, S.D., Cywes-Bentley, C., Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2 (2006) Proc Natl Acad Sci U S A, 103, pp. 16009-16014. , doi:10.1073/pnas.0607669103. PubMed: 17043230
dc.descriptionCox, G.M., McDade, H.C., Chen, S.C., Tucker, S.C., Gottfredsson, M., Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans (2001) Mol Microbiol, 39, pp. 166-175. , doi:10.1046/j.1365-2958.2001.02236.x. PubMed: 11123698
dc.descriptionKorbsrisate, S., Tomaras, A.P., Damnin, S., Ckumdee, J., Srinon, V., Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei (2007) Microbiology, 153, pp. 1907-1915. , doi:10.1099/mic.0.2006/003004-0. PubMed: 17526847
dc.descriptionLi, X., Gao, M., Han, X., Tao, S., Zheng, D., Disruption of the phospholipase D gene attenuates the virulence of Aspergillus fumigatus (2012) Infect Immun, 80, pp. 429-440. , doi:10.1128/IAI.05830-11. PubMed: 22083709
dc.descriptionTambourgi, D.V., Pedrosa, M.F.F., De Andrade, R.M.G., Billington, S.J., Griffiths, M., Sphingomyelinases D induce direct association of C1q to the erythrocyte membrane causing complement mediated autologous haemolysis (2007) Mol Immunol, 44, pp. 576-582. , doi:10.1016/j.molimm.2006.02.002. PubMed: 16540172
dc.descriptionBinford, G.J., Bodner, M.R., Cordes, M.H.J., Baldwin, K.L., Rynerson, M.R., Molecular Evolution, Functional Variation and Proposed Nomenclature of the Gene Family That Includes Sphingomyelinase D in Sicariid Spider Venoms (2009) Mol Biol Evol, 26, pp. 547-566. , PubMed: 19042943
dc.descriptionHedayati, M.T., Pasqualotto, A.C., Warn, P.A., Bowyer, P., Denning, D.W., Aspergillus flavus: Human pathogen, allergen and mycotoxin producer (2007) Microbiology, 153, pp. 1677-1692. , Reading, England doi: 10.1099/mic.0.2007/007641-0. PubMed: 17526826
dc.descriptionHealth TC for FS and P, Biologics I for IC in A (2005) Dermatophytosis, pp. 1-7
dc.descriptionDighe, N.S., Pattan, S.R., Bhawar, S.B., Gaware, V.M., (2009) Arling ' s Dis Rev, 1, pp. 88-101
dc.descriptionAmeen, M., Talhari, C., Talhari, S., Advances in paracoccidioidomycosis (2010) Clin Exp Dermatol, 35, pp. 576-580. , PubMed: 19874328
dc.descriptionAmpel, N.M., New perspectives on coccidioidomycosis (2010) Proc Am Thorac Soc, 7, pp. 181-185. , doi:10.1513/pats.200907-080AL. PubMed: 20463246
dc.descriptionBagagli, E., Bosco, S.M.G., Theodoro, R.C., Franco, M., Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen (2006) Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis, 6, pp. 344-351. , PubMed: 16473563
dc.descriptionKiss, T., Cadar, D., Spînu, M., Tick prevention at a crossroad: New and renewed solutions (2012) Vet Parasitol, 187, pp. 357-366. , doi:10.1016/j.vetpar.2012.02.010. PubMed: 22424918
dc.descriptionHealth TC for FS and P, Biologics I for IC in A (2009) Rhipicephalus Appendiculatus, pp. 1-2
dc.descriptionEdwards, K.T., Gotch ear: A poorly described, local, pathologic condition of livestock associated primarily with the Gulf Coast tick, Amblyomma maculatum (2011) Vet Parasitol, 183, pp. 1-7. , doi:10.1016/j.vetpar.2011.09.038. PubMed: 22047764
dc.descriptionBramwell, P.A., Wiener, P., Akkermans, A.D., Wellington, E.M., Phenotypic, genotypic and pathogenic variation among streptomycetes implicated in common scab disease (1998) Lett Appl Microbiol, 27, pp. 255-260. , doi:10.1046/j.1472-765X.1998.00439.x. PubMed: 9830140
dc.descriptionBazzini, S., Udine, C., Riccardi, G., Molecular approaches to pathogenesis study of Burkholderia cenocepacia, an important cystic fibrosis opportunistic bacterium (2011) Appl Microbiol Biotechnol, 92, pp. 887-895. , doi:10.1007/s00253-011-3616-5. PubMed: 21997606
dc.descriptionJurgenson, J.E., Zeller, K.A., Leslie, J.F., Expanded Genetic Map of Gibberella moniliformis (Fusarium verticillioides) (2002) Appl Environ Microbiol, 68, pp. 1972-1979. , doi:10.1128/AEM.68.4.1972-1979.2002. PubMed: 11916720
dc.descriptionAlbermann, S., Linnemannstöns, P., Tudzynski, B., Strategies for strain improvement in Fusarium fujikuroi: Overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis (2013) Appl Microbiol Biotechnol, 97, pp. 2979-2995. , doi:10.1007/s00253-012-4377-5. PubMed: 22983595
dc.descriptionThomma, B.P.H.J., Van Esse, H.P., Crous, P.W., De Wit, P.J.G.M., Pathogen profile Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae (2005) Mol Plant Pathol, 6, pp. 379-393. , doi: 10.1111/j.1364-3703.2005.00292.x. PubMed: 20565665
dc.descriptionSelvy, P.E., Lavieri, R.R., Lindsley, C.W., Brown, H.A., Phospholiapse D - Enzymology, functionality and chemical modulation (2011) Chem Rev, 111 (10), pp. 6064-6119. , 12
dc.descriptionVan Meeteren, L.A., Frederiks, F., Giepmans, B.N.G., Pedrosa, M.F.F., Billington, S.J., Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine (2004) J Biol Chem, 279, pp. 10833-10836. , doi:10.1074/jbc.C300563200. PubMed: 14732720
dc.descriptionHorta, C.C.R., Oliveira-Mendes, B.B.R., Do Carmo, A.O., Siqueira, Barroca, F.F., Lysophosphatidic acid mediates the release of cytokines and chemokines by human fibroblasts treated with loxosceles spider venom (2013) J Invest Dermatol, 6, pp. 1682-1685. , PubMed: 23353984
dc.languageen
dc.publisher
dc.relationPLoS ONE
dc.rightsaberto
dc.sourceScopus
dc.titleIdentification Of New Sphingomyelinases D In Pathogenic Fungi And Other Pathogenic Organisms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución