dc.creator | Sallaume S. | |
dc.creator | De Lima Martins S. | |
dc.creator | Ochi L.S. | |
dc.creator | Da Silva W.G. | |
dc.creator | Lavor C. | |
dc.creator | Liberti L. | |
dc.date | 2013 | |
dc.date | 2015-06-25T19:09:47Z | |
dc.date | 2015-11-26T15:07:51Z | |
dc.date | 2015-06-25T19:09:47Z | |
dc.date | 2015-11-26T15:07:51Z | |
dc.date.accessioned | 2018-03-28T22:18:17Z | |
dc.date.available | 2018-03-28T22:18:17Z | |
dc.identifier | | |
dc.identifier | International Journal Of Bioinformatics Research And Applications. , v. 9, n. 3, p. 261 - 270, 2013. | |
dc.identifier | 17445485 | |
dc.identifier | 10.1504/IJBRA.2013.053606 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84877294741&partnerID=40&md5=8c63d18a7dd81895ed5f440eb9f30f25 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/88375 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/88375 | |
dc.identifier | 2-s2.0-84877294741 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1257558 | |
dc.description | Some information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins. © 2013 Inderscience Enterprises Ltd. | |
dc.description | 9 | |
dc.description | 3 | |
dc.description | 261 | |
dc.description | 270 | |
dc.description | Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank (2000) Nucleic Acids Research, 28, pp. 235-242 | |
dc.description | Biswas, P., Toh, K.C., Ye, Y., A distributed sdp approach for large-scale noisy anchor-free graph realization with applications to molecular conformation (2008) SIAM Journal on Scientific Computing, 30, pp. 1251-1277 | |
dc.description | Carvalho, R.S., Lavor, C., Protti, F., Extending the geometric buildup algorithm for the molecular distance geometry problem (2008) Information Processing Letters, 108, pp. 234-237 | |
dc.description | Creighton, T., (1993) Proteins: Structures and Molecular Properties, , 2nd ed., W.H. Freeman, New York | |
dc.description | Dong, Q., Wu, Z., A linear-time algorithm for solving the molecular distance geometry problem with exact interatomic distances (2002) Journal of Global Optimization, 22, pp. 365-375 | |
dc.description | Lavor, C., Lee, J., Lee-St John, A., Liberti, L., Mucherino, A., Sviridenko, M., Discretization orders for distance geometry problems (2010) Optimization Letters, , DOI: 10.1007/s11590-011-0302-6 | |
dc.description | Lavor, C., Liberti, L., Maculan, N., (2006) The Discretizable Molecular Distance Geometry Problem, , arXiv:q-bio/0608012v1 | |
dc.description | Lavor, C., Liberti, L., Maculan, N., (2009) Molecular Distance Geometry Problem, Encyclopedia of Optimization, pp. 2305-2311. , 2nd ed., Springer, New York | |
dc.description | Lavor, C., Liberti, L., Maculan, N., Mucherino, A., Recent advances on the discretizable molecular distance geometry problem (2011) European Journal of Operational Research, , DOI: 10.1016/j.ejor.2011.11.007 | |
dc.description | Lavor, C., Liberti, L., Maculan, N., Mucherino, A., The discretizable molecular distance geometry problem (2012) Computational Optimization and Applications, , DOI: 10.1007/s 10589-011-9402-9406 | |
dc.description | Liberti, L., Lavor, C., Maculan, N., A branch-and-prune algorithm for the molecular distance geometry problem (2008) International Transactions in Operational Research, 15, pp. 1-17 | |
dc.description | Liberti, L., Lavor, C., Maculan, N., Molecular distance geometry methods: From continuous to discrete (2011) International Transactions in Operational Research, 18, pp. 33-51 | |
dc.description | Saxe, J.B., Embeddability of weighted graphs in k-space is strongly np-hard (1979) Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480-489. , Monticello, IL | |
dc.description | Schlick, T., (2002) Molecular Modeling and Simulation: An Interdisciplinary Guide, , Springer, New York | |
dc.description | Wu, D., Wu, Z., An updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data (2007) Journal of Global Optimization, 37, pp. 661-673 | |
dc.description | Wu, D., Wu, Z., Yuan, Y., Rigid versus unique determination of protein structures with geometric buildup (2008) Optimization Letters, 2, pp. 319-331 | |
dc.language | en | |
dc.publisher | | |
dc.relation | International Journal of Bioinformatics Research and Applications | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | A Discrete Search Algorithm For Finding The Structure Of Protein Backbones And Side Chains | |
dc.type | Artículos de revistas | |