dc.creatorSallaume S.
dc.creatorDe Lima Martins S.
dc.creatorOchi L.S.
dc.creatorDa Silva W.G.
dc.creatorLavor C.
dc.creatorLiberti L.
dc.date2013
dc.date2015-06-25T19:09:47Z
dc.date2015-11-26T15:07:51Z
dc.date2015-06-25T19:09:47Z
dc.date2015-11-26T15:07:51Z
dc.date.accessioned2018-03-28T22:18:17Z
dc.date.available2018-03-28T22:18:17Z
dc.identifier
dc.identifierInternational Journal Of Bioinformatics Research And Applications. , v. 9, n. 3, p. 261 - 270, 2013.
dc.identifier17445485
dc.identifier10.1504/IJBRA.2013.053606
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877294741&partnerID=40&md5=8c63d18a7dd81895ed5f440eb9f30f25
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88375
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88375
dc.identifier2-s2.0-84877294741
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257558
dc.descriptionSome information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins. © 2013 Inderscience Enterprises Ltd.
dc.description9
dc.description3
dc.description261
dc.description270
dc.descriptionBerman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank (2000) Nucleic Acids Research, 28, pp. 235-242
dc.descriptionBiswas, P., Toh, K.C., Ye, Y., A distributed sdp approach for large-scale noisy anchor-free graph realization with applications to molecular conformation (2008) SIAM Journal on Scientific Computing, 30, pp. 1251-1277
dc.descriptionCarvalho, R.S., Lavor, C., Protti, F., Extending the geometric buildup algorithm for the molecular distance geometry problem (2008) Information Processing Letters, 108, pp. 234-237
dc.descriptionCreighton, T., (1993) Proteins: Structures and Molecular Properties, , 2nd ed., W.H. Freeman, New York
dc.descriptionDong, Q., Wu, Z., A linear-time algorithm for solving the molecular distance geometry problem with exact interatomic distances (2002) Journal of Global Optimization, 22, pp. 365-375
dc.descriptionLavor, C., Lee, J., Lee-St John, A., Liberti, L., Mucherino, A., Sviridenko, M., Discretization orders for distance geometry problems (2010) Optimization Letters, , DOI: 10.1007/s11590-011-0302-6
dc.descriptionLavor, C., Liberti, L., Maculan, N., (2006) The Discretizable Molecular Distance Geometry Problem, , arXiv:q-bio/0608012v1
dc.descriptionLavor, C., Liberti, L., Maculan, N., (2009) Molecular Distance Geometry Problem, Encyclopedia of Optimization, pp. 2305-2311. , 2nd ed., Springer, New York
dc.descriptionLavor, C., Liberti, L., Maculan, N., Mucherino, A., Recent advances on the discretizable molecular distance geometry problem (2011) European Journal of Operational Research, , DOI: 10.1016/j.ejor.2011.11.007
dc.descriptionLavor, C., Liberti, L., Maculan, N., Mucherino, A., The discretizable molecular distance geometry problem (2012) Computational Optimization and Applications, , DOI: 10.1007/s 10589-011-9402-9406
dc.descriptionLiberti, L., Lavor, C., Maculan, N., A branch-and-prune algorithm for the molecular distance geometry problem (2008) International Transactions in Operational Research, 15, pp. 1-17
dc.descriptionLiberti, L., Lavor, C., Maculan, N., Molecular distance geometry methods: From continuous to discrete (2011) International Transactions in Operational Research, 18, pp. 33-51
dc.descriptionSaxe, J.B., Embeddability of weighted graphs in k-space is strongly np-hard (1979) Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480-489. , Monticello, IL
dc.descriptionSchlick, T., (2002) Molecular Modeling and Simulation: An Interdisciplinary Guide, , Springer, New York
dc.descriptionWu, D., Wu, Z., An updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data (2007) Journal of Global Optimization, 37, pp. 661-673
dc.descriptionWu, D., Wu, Z., Yuan, Y., Rigid versus unique determination of protein structures with geometric buildup (2008) Optimization Letters, 2, pp. 319-331
dc.languageen
dc.publisher
dc.relationInternational Journal of Bioinformatics Research and Applications
dc.rightsfechado
dc.sourceScopus
dc.titleA Discrete Search Algorithm For Finding The Structure Of Protein Backbones And Side Chains
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución