Artículos de revistas
Saccharomyces Cerevisiae Transcriptional Reprograming Due To Bacterial Contamination During Industrial Scale Bioethanol Production
Registro en:
Microbial Cell Factories. Biomed Central Ltd., v. 14, n. 1, p. - , 2015.
14752859
10.1186/s12934-015-0196-6
2-s2.0-84924103952
Autor
Carvalho-Netto O.V.
Carazzolle M.F.
Mofatto L.S.
Teixeira P.J.P.L.
Noronha M.F.
Calderon L.A.L.
Mieczkowski P.A.
Argueso J.L.
Pereira G.A.G.
Institución
Resumen
Background: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. Results: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. Conclusions: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst. 14 1
Basso, L.C., Amorim, H.V., Oliveira, A.J., Lopes, M.L., Yeast selection for fuel ethanol production in Brazil (2008) FEMS Yeast Res, 8, pp. 1155-1163 Carvalho-Netto, O.V., Carazzolle, M.F., Rodrigues, A., Bragança, W.O., Costa, G.G.L., Argueso, J.L., A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation (2013) J Biotechnol, 168, pp. 701-709 Silva-Filho, E.A., Santos, S.K.B., Resende, A.D.M., Morais, J.O.F., Morais, M.A., Ardaillon Simões, D., Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting (2005) Antonie Van Leeuwenhoek, 88, pp. 13-23 Argueso, J.L., Carazzolle, M.F., Mieczkowski, P.A., Duarte, F.M., Carvalho-Netto, O.V., Missawa, S.K., Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production (2009) Genome Res, 19, pp. 2258-2270 Soares, E.V., Flocculation in Saccharomyces cerevisiae: a review (2011) J Appl Microbiol, 110, pp. 1-18 Verstrepen, K.J., Klis, F.M., Flocculation, adhesion and biofilm formation in yeasts (2006) Mol Microbiol, 60, pp. 5-15 Amorim, H.V., Lopes, M.L., Castro Oliveira, J.V., Buckeridge, M.S., Goldman, G.H., Scientific challenges of bioethanol production in Brazil (2011) Appl Microbiol Biotechnol, 91, pp. 1267-1275 Abreu-Cavalheiro, A., Monteiro, G., Solving ethanol production problems with genetically modified yeast strains (2014) Braz J Microbiol, 44 (3), pp. 665-671 Lucena, B.T.L., dos Santos, B.M., Moreira, J.L., Moreira, A.P.B., Nunes, A.C., Azevedo, V., Diversity of lactic acid bacteria of the bioethanol process (2010) BMC Microbiol, 10, p. 298 Yokoya, F., Oliva-Neto, P., Características da floculação de leveduras por Lactobacillus fermentum (1991) Brazilian J Microbiol, 22, pp. 12-16 Tiukova, I., Eberhard, T., Passoth, V., Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae (2014) Biotechnol Appl Biochem, 61, pp. 40-44 Pretzer, G., Snel, J., Molenaar, D., Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum (2005) J Bacteriol, 187, pp. 6128-6136 Furukawa, S., Nojima, N., Nozaka, S., Hirayama, S., Satoh, A., Ogihara, H., Mutants of Lactobacillus plantarum ML11-11 deficient in co-aggregation with yeast exhibited reduced activities of mixed-species biofilm formation (2012) Biosci Biotechnol Biochem, 76, pp. 326-330 Turner, M.S., Hafner, L.M., Walsh, T., Giffard, P.M., Peptide surface display and secretion using two LPXTG-containing surface proteins from Lactobacillus fermentum BR11 (2003) Appl Environ Microbiol, 69, pp. 5855-5863 Hirayama, S., Furukawa, S., Ogihara, H., Morinaga, Y., Yeast mannan structure necessary for co-aggregation with Lactobacillus plantarum ML11-11 (2012) Biochem Biophys Res Commun, 419, pp. 652-655 Rayner, J.C., Munro, S., Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae (1998) J Biol Chem, 273, pp. 26836-26843 Abbott, D.A., Zelle, R.M., Pronk, J.T., Maris, A.J.A., Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges (2009) FEMS Yeast Res, 9, pp. 1123-1136 Dorta, C., Oliva-Neto, P., Abreu-Neto, M.S., Nicolau-Junior, N., Nagashima, A.I., Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26) (2005) World J Microbiol Biotechnol, 22, pp. 177-182 Kawahata, M., Masaki, K., Fujii, T., Iefuji, H., Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p (2006) FEMS Yeast Res, 6, pp. 924-936 Thomas, K.C., Hynes, S.H., Ingledew, W.M., Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids (2002) Appl Environ Microbiol, 68, pp. 1616-1623 Narendranath, N.V., Thomas, K.C., Ingledew, W.M., Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium (2001) J Ind Microbiol Biotechnol, 26, pp. 171-177 Argueso, J.L., Pereira, G.A.G., Perspective: Indigenous sugarcane yeast strains as ideal biological platforms for the delivery of next generation biorefining technologies (2010) Int Sugar J, 112, pp. 86-89 Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB (2007) Nucleic Acids Res, 35, pp. 7188-7196 Bakker, B.M., Overkamp, K.M., Maris, A.J., Kötter, P., Luttik, M.A., Dijken, J.P., Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae (2001) FEMS Microbiol Rev, 25, pp. 15-37 Nevoigt, E., Stahl, U., Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae (1997) FEMS Microbiol Rev, 21, pp. 231-241 Ishida, N., Saitoh, S., Ohnishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid (2006) Appl Biochem Biotechnol, 131, pp. 795-807 Oliva-Neto, P., Yokoya, F., Evaluation of bacterial contamination in a fed-batch alcoholic fermentation process (1994) World J Microbiol Biotechnol, 10, pp. 697-699 Geng, F., Laurent, B.C., Roles of SWI/SNF and HATs throughout the dynamic transcription of a yeast glucose-repressible gene (2004) EMBO J, 23, pp. 127-137 Ozcan, S., Vallier, L.G., Flick, J.S., Carlson, M., Johnston, M., Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose (1997) Yeast, 13, pp. 127-137 Basso, L.C., Basso, T.O., Rocha, S.N., Ethanol production in Brazil: the industrial process and its impact on yeast fermentation (2010) Biofuel Production - Recent Developments and Prospects, 1, pp. 85-100. , Bernardes MAS, editor. Rijeka: InTech Piper, P., Ortiz Calderon, C., Hatzixanthis, K., Mollapour, M., Weak acid adaptation the stress response that confers yeasts with resistance to organic acid food preservatives (2001) Microbiology, 147, pp. 2635-2642 Serrano, R., Kielland-Brandt, M.C., Fink, G.R., Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases (1986) Nature, 319, pp. 689-693 Abbott, D.A., Knijnenburg, T.A., Poorter, L.M.I., Reinders, M.J.T., Pronk, J.T., Maris, A.J., Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae (2007) FEMS Yeast Res, 7, pp. 819-833 Abbott, D.A., Suir, E., Maris, A.J.A., Pronk, J.T., Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae (2008) Appl Environ Microbiol, 74, pp. 5759-5768 Fernandes, A.R., Mira, N.P., Vargas, R.C., Canelhas, I., Sá-Correia, I., Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes (2005) Biochem Biophys Res Commun, 337, pp. 95-103 Mira, N.P., Becker, J.D., Sá-Correia, I., Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid (2010) OMICS, 14, pp. 587-601 Mira, N.P., Palma, M., Guerreiro, J.F., Sá-Correia, I., Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid (2010) Microb Cell Fact, 9, p. 79 Grant, C.M., MacIver, F.H., Dawes, I.W., Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae (1996) Curr Genet, 29, pp. 511-515 Stephen, D.W., Jamieson, D.J., Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae (1996) FEMS Microbiol Lett, 141, pp. 207-212 Grant, C.M., Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions (2001) Mol Microbiol, 39, pp. 533-541 Wheeler, G.L., Trotter, E.W., Dawes, I.W., Grant, C.M., Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors (2003) J Biol Chem, 278, pp. 49920-49928 Dormer, U.H., Westwater, J., McLaren, N.F., Kent, N.A., Mellor, J., Jamieson, D.J., Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network (2000) J Biol Chem, 275, pp. 32611-32616 Abbott, D.A., Suir, E., Duong, G.-H., Hulster, E., Pronk, J.T., Maris, A.J., Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae (2009) Appl Environ Microbiol, 75, pp. 2320-2325 Ludovico, P., Rodrigues, F., Almeida, A., Silva, M.T., Barrientos, A., Côrte-Real, M., Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae (2002) Mol Biol Cell, 13, pp. 2598-2606 Rodríguez-Navarro, S., Llorente, B., Rodríguez-Manzaneque, M.T., Ramne, A., Uber, G., Marchesan, D., Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6 (2002) Yeast, 19, pp. 1261-1276 Padilla, P.A., Fuge, E.K., Crawford, M.E., Errett, A., Werner-Washburne, M., The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation (1998) J Bacteriol, 180, pp. 5718-5726 Ehrenshaft, M., Bilski, P., Li, M.Y., Chignell, C.F., Daub, M.E., A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis (1999) Proc Natl Acad Sci U S A, 96, pp. 9374-9378 Stambuk, B.U., Dunn, B., Alves, S.L., Duval, E.H., Sherlock, G., Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis (2009) Genome Res, 19, pp. 2271-2278 Hoffman, C.S., Preparation of yeast DNA (2001) Current Protocols in Molecular Biology, pp. 13-21. , Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. New York: John Wiley & Sons Collart, M.A., Oliviero, S., Preparation of Yeast RNA (2001) Current Protocols in Molecular Biology, pp. 13-22. , Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. New York: John Wiley & Sons Li, R., Li, Y., Kristiansen, K., Wang, J., SOAP: short oligonucleotide alignment program (2008) Bioinformatics, 24, pp. 713-714 Wang, L., Feng, Z., Wang, X., Wang, X., Zhang, X., DEGseq: an R package for identifying differentially expressed genes from RNA-seq data (2010) Bioinformatics, 26, pp. 136-138 Mortazavi, A., Williams, B.A., Mccue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by RNA-Seq (2008) Nat Methods, 5, pp. 1-8 Sharan, R., Maron-Katz, A., Shamir, R., CLICK and EXPANDER: a system for clustering and visualizing gene expression data (2003) Bioinformatics, 19, pp. 1787-1799 Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408 Cui, P., Lin, Q., Ding, F., Xin, C., Gong, W., Zhang, L., A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing (2010) Genomics, 96, pp. 259-265 Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E.M., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients (1997) Appl Environ Microbiol, 63, pp. 3233-3241