dc.creatorLagos M.J.
dc.creatorAutreto P.A.S.
dc.creatorBettini J.
dc.creatorSato F.
dc.creatorDantas S.O.
dc.creatorGalvao D.S.
dc.creatorUgarte D.
dc.date2015
dc.date2015-06-25T12:53:11Z
dc.date2015-11-26T15:07:21Z
dc.date2015-06-25T12:53:11Z
dc.date2015-11-26T15:07:21Z
dc.date.accessioned2018-03-28T22:17:45Z
dc.date.available2018-03-28T22:17:45Z
dc.identifier
dc.identifierJournal Of Applied Physics. American Institute Of Physics Inc., v. 117, n. 9, p. - , 2015.
dc.identifier218979
dc.identifier10.1063/1.4913625
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84924160021&partnerID=40&md5=7da643c3d245b674a2b54f001c02f81e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85439
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85439
dc.identifier2-s2.0-84924160021
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257432
dc.descriptionWe report here an atomistic study of the mechanical deformation of AuxCu(1- x ) atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.
dc.description117
dc.description9
dc.description
dc.description
dc.descriptionAlloca, C., Smith, D., Instrumentation and metrology for nanotechnology (2005) Report of the National Nanotechnology Initiative, , www.nano.gov, Cha 3
dc.descriptionRubio, G., Agraït, N., Vieira, S., (1996) Phys. Rev. Lett., 76, p. 2302
dc.descriptionRodrigues, V., Führer, T., Ugarte, D., (2000) Phys. Rev. Lett., 85, p. 4124
dc.descriptionBrinckmann, S., Kim, J.-Y., Greer, J.R., (2008) Phys. Rev. Lett., 100
dc.descriptionLagos, M.J., Sato, F., Galvão, D.S., Ugarte, D., (2011) Phys. Rev. Lett., 106
dc.descriptionSieradzki, K., Rinaldi, A., Friesen, C., Peralta, P., (2006) Acta Mater., 54, p. 4533
dc.descriptionKondo, Y., Takayanagi, K., (2000) Science, 289, p. 606
dc.descriptionLagos, M.J., Bettini, J., Sato, F., Rodrigues, V., Galvão, D.S., Ugarte, D., (2009) Nat. Nanotechnol., 4, p. 149
dc.descriptionCallister, W.D., (2003) Materials Science and Engineering: An Introduction, , (John Wiley, New York)
dc.descriptionRinge, E., Van Duyne, R.P., Marks, L.D., (2012) Nano Lett., 11, p. 3399
dc.descriptionBettini, J., Sato, F., Coura, P.Z., Dantas, S.O., Galvão, D.S., Ugarte, D., (2006) Nat. Nanotechnol., 1, p. 182
dc.descriptionErwin, S.C., Zu, L., Haftel, M.I., Efros, A.L., Kennedy, T.A., Norris, D.J., (2005) Nature, 436, p. 91
dc.descriptionSlater, T.J.A., Macedo, A., Schroeder, S.L.M., Grace Burke, M., Obrien, P., Camargo, P.H.C., Haigh, S.J., (2014) Nano Lett., 14, p. 1921
dc.descriptionKondo, Y., Takayanagi, K., (1997) Phys. Rev. Lett., 79, p. 3455
dc.descriptionCarter, C.B., Williams, D.B., (2009) Transmission Electron Microscopy, , (Springer, New York)
dc.descriptionRodrigues, V., Ugarte, D., (2003) Nanowires and Nanobelts, 1. , edited by Z. L. Wang (Kluwer Academic Publishers, Boston), Vol., Cha 6
dc.descriptionPorter, D.A., Easterling, K.E., (1992) Phase Transformations in Metals and Alloys, , (Chapman and Hall, London)
dc.descriptionSato, F., Moreira, A.S., Bettini, J., Coura, P.Z., Dantas, S.O., Ugarte, D., Galvão, D.S., (2006) Phys. Rev. B, 74
dc.descriptionCleri, F., Rosato, V., (1993) Phys. Rev. B, 48, p. 22
dc.descriptionTomànek, D., Aligia, A.A., Balseiro, C.A., (1985) Phys. Rev. B, 32, p. 5051
dc.descriptionSato, F., Moreira, A.S., Coura, P.Z., Dantas, S.O., Legoas, S.B., Ugarte, D., Galvão, D.S., (2005) Appl. Phys. A, 81, p. 1527
dc.descriptionCoura, P.Z., Legoas, S.B., Moreira, A.S., Sato, F., Rodrigues, V., Dantas, S.O., Ugarte, D., Galvão, D.S., (2004) Nano Lett., 4, p. 1187
dc.descriptionGonzález, J.C., Rodrigues, V., Bettini, J., Rego, L.G.C., Rocha, A.R., Coura, P.Z., Dantas, S.O., Ugarte, D., (2004) Phys. Rev. Lett., 93
dc.descriptionLandman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J., (1990) Science, 248, p. 454
dc.descriptionOvid'Ko, I.A., Sheinerman, A.G., (2011) Rev. Adv. Mater. Sci., 27, p. 189. , http://www.ipme.ru/e-journals/RAMS/no_22711/ovidko.html, available online at
dc.descriptionRice, J.R., (1992) J. Mech. Phys. Solids, 40, p. 239
dc.descriptionTadmor, E.B., Hai, S., (2003) J. Mech. Phys. Solids, 51, p. 765
dc.descriptionRodriguez-Lopez, J.L., Montejano-Carrizales, J.M., Pal, U., Sanchez-Ramirez, J.F., Troiani, H.E., Garcia, D., Miki-Yoshida, M., Jose-Yacaman, M., (2004) Phys. Rev. Lett., 92
dc.descriptionVitos, L., Ruban, A.V., Skriver, H.L., Kollar, J., (1998) Surf. Sci., 411, p. 186
dc.descriptionLagos, M.J., Sato, F., Autreto, P.A.S., Galvão, D.S., Rodrigues, V., Ugarte, D., (2011) Nanotechnology, 22
dc.descriptionLegoas, S.B., Galvão, D.S., Rodrigues, V., Ugarte, D., (2002) Phys. Rev. Lett., 88
dc.descriptionLisiecki, I., Filankembo, A., Sack-Kongehl, H., Weiss, K., Pileni, M.P., Urban, J., (2000) Phys. Rev. B, 61, p. 4968
dc.descriptionhttp://dx.doi.org/10.1063/1.4913625
dc.languageen
dc.publisherAmerican Institute of Physics Inc.
dc.relationJournal of Applied Physics
dc.rightsaberto
dc.sourceScopus
dc.titleSurface Effects On The Mechanical Elongation Of Aucu Nanowires: De-alloying And The Formation Of Mixed Suspended Atomic Chains
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución