dc.creatorBento M.
dc.creatorRittner L.
dc.creatorAppenzeller S.
dc.creatorLapa A.
dc.creatorLotufo R.
dc.date2013
dc.date2015-06-25T19:09:21Z
dc.date2015-11-26T15:07:15Z
dc.date2015-06-25T19:09:21Z
dc.date2015-11-26T15:07:15Z
dc.date.accessioned2018-03-28T22:17:40Z
dc.date.available2018-03-28T22:17:40Z
dc.identifier9780819494436
dc.identifierProgress In Biomedical Optics And Imaging - Proceedings Of Spie. , v. 8669, n. , p. - , 2013.
dc.identifier16057422
dc.identifier10.1117/12.2006924
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84878332224&partnerID=40&md5=1db6c4875cf2a11c52dde81cf82d9401
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88279
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88279
dc.identifier2-s2.0-84878332224
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257412
dc.descriptionThe brain white matter is responsible for the transmission of electrical signals through the central nervous system. Lesions in the brain white matter, called white matter hyperintensity (WMH), can cause a significant functional deficit. WMH are commonly seen in normal aging, but also in a number of neurological and psychiatric disorders. We propose here an automatic method for WHM analysis in order to distinguish regions of interest between normal and non-normal white matter (identification task) and also to distinguish different types of lesions based on their etiology: demyelinating or ischemic (classification task). The method combines texture analysis with the use of classifiers, such as Support Vector Machine (SVM), Nearst Neighboor (1NN), Linear Discriminant Analysis (LDA) and Optimum Path Forest (OPF). Experiments with real brain MRI data showed that the proposed method is suitable to identify and classify the brain lesions. © 2013 SPIE.
dc.description8669
dc.description
dc.description
dc.description
dc.descriptionThe Society of Photo-Optical Instrumentation Engineers (SPIE),Aeroflex Incorporated,CREOL - Univ. Central Florida, Coll. Opt. Photonics,DQE Instruments, Inc.,Medtronic, Inc.,PIXELTEQ, Multispectral Sensing and Imaging
dc.descriptionAppenzeller, S., Faria, A.V., Li, L., Costallat, L.T., Cendes, F., Quantitative magnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients (2008) Annals of Neurology, 64 (6), pp. 635-643
dc.descriptionKlöppel, S., Abdulkadir, A., Hadjidemetriou, S., Issleib, S., Frings, L., Thanh, T., Mader, I., Ronneberger, O., A comparison of different automated methods for the detection of white matter lesions in mri data (2011) NeuroImage, 57 (2), pp. 416-422
dc.descriptionAnbeek, P., Vincken, K.L., Osch, M.J.P., Bisschops, R.H.C., Grond, J., Probabilistic segmentation of whitematter lesions in mr imaging (2004) NeuroImage, 21 (3), pp. 1037-1044
dc.descriptionWu, M., Rosano, C., Butters, M., Whyte, E., Nable, M., Crooks, R., Meltzer, C.C., Aizenstein, H.J., A fully automated method for quantifying and localizing white matter hyperintensities on mr images (2006) Psychiatry Research, 148 (2-3), pp. 133-142
dc.descriptionZimring, D.G., Achiron, A., Miron, S., Faibel, M., Azhari, H., Automatic detection and characterization of multiple sclerosis lesions in brain mr images (1998) Magnetic Resonance Imaging, 16 (3), pp. 311-318
dc.descriptionHaralick, R.M., Shanmugam, K., Dinstein, I., Textural features for image classification (1973) , IEEE Transactions on Systems, Man and Cybernetics, 3 (6), pp. 610-621
dc.descriptionCastellano, G., Bonilha, L., Cendes, F., Texture analysis of medical images (2004) Clinical Radiology, 59 (12), pp. 1061-1069
dc.descriptionLerski, R.A., Schad, L., Boyce, D., Blül, S., Zuna, I., Mr image texture analysis: An approach to tissue characterization (1993) Magnetic Resonance Imaging, 11 (6), pp. 873-887
dc.descriptionKruggel, F., Paul, J., Gertz, H., Texture-based segmentation of diffuse lesions of the brain's white matter (2008) Neuroimage, 39 (3), pp. 987-996
dc.descriptionByun, H., Lee, S.W., Applications of support vector machines for pattern recognition: A survey (2002) Proc. First International Workshop on Pattern Recognition with Support Vector Machines, pp. 213-236
dc.descriptionBhatia, N., Survey of nearest neighbor techniques (2010) International Journal of Computer Science and Information Security, 8 (2), pp. 302-305
dc.descriptionWebb, A.R., (2002) Statistical Pattern Recognition, pp. 123-163. , John Wiley & Sons, Malvern
dc.descriptionCappabianco, F., Falcão, A., Rocha, L., Clustering by optimum path forest and its application to automatic gm/wm classification in mr-t1 images of the brain (2008) Proc. 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, pp. 428-431
dc.descriptionLotufo, R., Machado, R., Körbes, A., Ramos, R., Adessowiki: On-line collaborative scientific programming platform (2009) Proc 5th International Symposium on Wikis and Open Collaboration, 10, pp. 1-10. , 6
dc.descriptionSchwartz, W.R., Siqueira, F.R., Pedrini, H., Evaluation of feature descriptors for texture classification (2012) Journal of Electronic Imaging, 21 (2), pp. 1-17
dc.descriptionHan, J., Kamber, M., (2006) Data Mining: Concepts and Techniques, pp. 291-310. , Elsevier, San Diego & London & San Franscisco
dc.descriptionTaylor, J.S., Cristianini, N., (2000) Support Vector Machines and other Kernel-based Learning Methods, pp. 93-122. , Cambridge University Press, New Kingdom
dc.descriptionPapa, J., Falcão, A.X., Suzuki, C.T.N., Supervised pattern classification based on optimum-path forest (2009) International Journal of Imaging Systems and Technology, 19 (2), pp. 120-131
dc.descriptionDuda, R.O., Hart, P.E., Stork, D.G., (2001) Pattern Classification, , Wiley, Guelph Ontario
dc.descriptionSouza, R., Rittner, L., Lotufo, R., A comparison between optimum-path forest and k-nearest neighbors classifier (2012) Proc. XXV SIBGRAPI - Conference on Graphics, Patterns and Images, pp. 260-267
dc.descriptionPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Duchesnay, E., Scikit-learn: Machine learning in python (2011) Journal of Machine Learning Research, 12 (10), pp. 2825-2830
dc.languageen
dc.publisher
dc.relationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.rightsfechado
dc.sourceScopus
dc.titleAnalysis Of Brain White Matter Hyperintensities Using Pattern Recognition Techniques
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución