dc.creatorFlavio Da Silveira Petruci J.
dc.creatorFortes P.R.
dc.creatorKokoric V.
dc.creatorWilk A.
dc.creatorRaimundo I.M.
dc.creatorCardoso A.A.
dc.creatorMizaikoff B.
dc.date2013
dc.date2015-06-25T19:09:04Z
dc.date2015-11-26T15:07:13Z
dc.date2015-06-25T19:09:04Z
dc.date2015-11-26T15:07:13Z
dc.date.accessioned2018-03-28T22:17:38Z
dc.date.available2018-03-28T22:17:38Z
dc.identifier
dc.identifierAnalyst. , v. 139, n. 1, p. 198 - 203, 2013.
dc.identifier32654
dc.identifier10.1039/c3an01793a
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84888351078&partnerID=40&md5=2c82134342f19a855caf7f387c32a585
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88247
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88247
dc.identifier2-s2.0-84888351078
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257404
dc.descriptionHydrogen sulfide is a highly corrosive, harmful, and toxic gas produced under anaerobic conditions within industrial processes or in natural environments, and plays an important role in the sulfur cycle. According to the U.S. Occupational Safety and Health Administration (OSHA), the permissible exposure limit (during 8 hours) is 10 ppm. Concentrations of 20 ppm are the threshold for critical health issues. In workplace environments with human subjects frequently exposed to H2S, e.g., during petroleum extraction and refining, real-time monitoring of exposure levels is mandatory. Sensors based on electrochemical measurement principles, semiconducting metal-oxides, taking advantage of their optical properties, have been described for H 2S monitoring. However, extended response times, limited selectivity, and bulkiness of the instrumentation are common disadvantages of the sensing techniques reported to date. Here, we describe for the first time usage of a new generation of compact gas cells, i.e., so-called substrate-integrated hollow waveguides (iHWGs), combined with a compact Fourier transform infrared (FTIR) spectrometer for advanced gas sensing of H2S. The principle of detection is based on the immediate UV-assisted conversion of the rather weak IR-absorber H2S into much more pronounced and distinctively responding SO2. A calibration was established in the range of 10-100 ppm with a limit of detection (LOD) at 3 ppm, which is suitable for occupational health monitoring purposes. The developed sensing scheme provides an analytical response time of less than 60 seconds. Considering the substantial potential for miniaturization using e.g., a dedicated quantum cascade laser (QCL) in lieu of the FTIR spectrometer, the developed sensing approach may be evolved into a hand-held instrument, which may be tailored to a variety of applications ranging from environmental monitoring to workplace safety surveillance, process analysis and clinical diagnostics, e.g., breath analysis. This journal is © The Royal Society of Chemistry 2014.
dc.description139
dc.description1
dc.description198
dc.description203
dc.descriptionDOE; U.S. Department of Energy
dc.descriptionFang, G.J., Liu, Z.L., Liu, C.Q., Yao, K.L., (2000) Sens. Actuators, B, 66, pp. 46-48
dc.descriptionChowdhuri, A., Gupta, V., Sreenivas, K., (2003) Sens. Actuators, B, 93, pp. 572-579
dc.descriptionWang, Y., Yan, H., Wang, E.F., (2002) Sens. Actuators, B, 87, pp. 115-121
dc.descriptionYu, C.B., Wang, Y.J., Hua, K.F., Xing, W., Lu, T.H., (2002) Sens. Actuators, B, 86, pp. 259-265
dc.descriptionCardoso, A.A., Liu, H., Dasgupta, P.K., (1997) Talanta, 44, pp. 1099-1106
dc.descriptionWiller, U., Scheel, D., Kostjucenko, I., Bohling, C., Schade, W., Faber, E., (2002) Spectrochim. Acta, Part A, 58, pp. 2427-2432
dc.descriptionTarver, G.A., Dasgupta, P.K., (1995) Atmos. Environ., 29 (11), pp. 1291-1928
dc.descriptionSaunders, F., Larson, L., Tatum, V., (2002) AIHA J., 63 (3), pp. 317-325
dc.descriptionToombs, C., Insko, M., Wintner, E., Deckwerth, T.L., Usansky, H., Jamil, K., Goldstein, B., Szabo, C., (2010) Br. J. Clin. Pharmacol., 69 (6), pp. 626-636
dc.descriptionLawrence, N.S., Davis, J., Compton, R.G., (2000) Talanta, 52, pp. 771-784
dc.descriptionCiaffoni, L., Peverall, R., Ritchie, G.A.D., (2011) J. Breath Res., 5 (2), pp. 1-11
dc.descriptionPetruci, J.F.S., Cardoso, A.A., (2013) Microchem. J., 106, pp. 368-372
dc.descriptionInsko, M.A., Deckwerth, T.L., Hill, P., Toombs, C.F., Szabo, C., (2009) Br. J. Pharmacol., 157 (6), pp. 944-951
dc.descriptionSpringfield, J., Suarez, F., Majerus, G., Lenton, P.A., Furne, J.K., Levitt, M.D., (2001) J. Dent. Res., 80 (5), pp. 1441-1444
dc.descriptionWang, L.-F., Sharples, T.-R., (2011) Chin. Phys. Lett., 28 (6), p. 067805
dc.descriptionMori, T., Koga, M., Hikosaka, Y., Nonaka, T., Mishina, F., Sakai, Y., Koizumi, J., (1991) Water Sci. Technol., 23 (79), pp. 1275-1282
dc.descriptionHendrickson, R.G., Chang, A., Hamilton, R.J., (2004) Am. J. Ind. Med., 45, pp. 346-350
dc.descriptionGuidotti, T.L., (2010) Int. J. Toxicol., 29 (6), pp. 569-581
dc.descriptionGuidotti, T.L., (1996) Occup. Med., 46 (5), pp. 367-371
dc.descriptionSimon, F., Giudici, R., Duy, C.N., Schelzig, H., Oetter, S., Groeger, M., Wachter, U., Calzia, E., (2008) Shock, 30 (4), pp. 359-364
dc.descriptionPrior, M.G., Sharma, A.K., Yong, S., Lopez, A., (1988) Can. J. Vet. Res., 52 (3), pp. 375-379
dc.descriptionCardoso, A.A., (1990) Quim. Nova, 14, pp. 19-21
dc.descriptionPandey, S.K., Kim, K.-K., (2009) Environ. Sci. Technol., 43, pp. 3020-3029
dc.descriptionToda, K., Ohira, S.-I., Tanaka, T., Nishimura, T., Dasgupta, P.K., (2004) Environ. Sci. Technol., 38, pp. 1529-1536
dc.descriptionPandey, S.K., Kim, K.-H., Tang, K.-A., (2012) Trends Anal. Chem., 32, pp. 87-99
dc.descriptionChen, W., Kosterev, A.A., Tittel, F.K., Gao, X., Zhao, W., (2008) Appl. Phys. B: Lasers Opt., 90, pp. 311-315
dc.descriptionVarga, A., Bozoki, Z., Szakall, M., Szabo, G., (2006) Appl. Phys. B: Lasers Opt., 85, pp. 315-321
dc.descriptionBerglen, T.F., Berntsen, T.K., Isaken, I.S.A., Sundet, J.K., (2004) J. Geophys. Res., 109, p. 191310
dc.descriptionLan-Yan, X., Ding-Hong, G., Jing, T., Wen-Bo, D., Hui-Qi, H., (2008) Chemosphere, 71, pp. 1774-1780
dc.descriptionMoradi, M., Daryan, J.T., Mohamadalizadeh, A., (2013) Fuel Process. Technol., 109, pp. 163-171
dc.descriptionLarsen, E.S., Hong, W.W., Spartz, M.L., (1997) Appl. Spectrosc., 51 (11), pp. 1656-1667
dc.descriptionFrey, C.M., Luxenburger, F., Droege, S., Mackoviak, V., Mizaikoff, B., (2011) Appl. Spectrosc., 65, pp. 1269-1273
dc.descriptionCharlton, C.M., Inberg, A., Croitoru, N., Mizaikoff, B., (2003) IEE Proc.-J: Optoelectron., 150, pp. 306-310
dc.descriptionYoung, C., Menegazzo, N., Riley, A.E., Brons, C.H., Disanzo, F.P., Givens, J.L., Martin, J.L., Mizaikoff, B., (2011) Anal. Chem., 83 (16), pp. 6141-6147
dc.descriptionKozodoy, R.L., Micheels, R.H., Harrington, J.A., (1996) Appl. Spectrosc., 50 (3), pp. 415-419
dc.descriptionSaggese, S.J., Harrington, J.A., Sigel Jr., G.H., (1991) Opt. Lett., 16, pp. 27-31
dc.descriptionWilk, A., Carter, J.C., Chrisp, M., Manuel, A.M., Mirkarimi, P., Alameda, J.B., Mizaikoff, B., (2013) Anal. Chem., , 10.1021/ac402391m
dc.descriptionPetruci, J.F.S., Fortes, P.R., Kokoric, V., Wilk, A., Raimundo Jr., I.M., Cardoso, A.A., Mizaikoff, B., (2013) Sci. Rep., 3, p. 3174
dc.descriptionCox, R.A., Sheppard, D., (1980) Nature, 284, pp. 330-331
dc.descriptionRothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.E., Birk, M., Boudon, V., Auwera, J.V., (2009) J. Quant. Spectrosc. Radiat. Transfer, 110, pp. 533-572
dc.descriptionYoung, C., Kim, S.-S., Luzinova, Y., Weida, M., Arnone, D., Takeuchi, E., Day, T., Mizaikoff, B., (2009) Sens. Actuators, B, 140 (1), pp. 24-29
dc.descriptionWörle, K., Seichter, F., Wilk, A., Armacost, C., Day, T., Godejohann, M., Wachter, U., Mizaikoff, B., (2013) Anal. Chem., 8, pp. 2697-2702
dc.languageen
dc.publisher
dc.relationAnalyst
dc.rightsaberto
dc.sourceScopus
dc.titleMonitoring Of Hydrogen Sulfide Via Substrate-integrated Hollow Waveguide Mid-infrared Sensors In Real-time
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución