dc.creatorAdur J.
dc.creatorHerrera Torres A.M.
dc.creatorMasedunskas A.
dc.creatorBaratti M.O.
dc.creatorDe Thomaz A.A.
dc.creatorPelegati V.B.
dc.creatorCarvalho H.F.
dc.creatorCesar C.L.
dc.date2013
dc.date2015-06-25T19:09:20Z
dc.date2015-11-26T15:07:12Z
dc.date2015-06-25T19:09:20Z
dc.date2015-11-26T15:07:12Z
dc.date.accessioned2018-03-28T22:17:37Z
dc.date.available2018-03-28T22:17:37Z
dc.identifier9780819496461
dc.identifierProgress In Biomedical Optics And Imaging - Proceedings Of Spie. , v. 8797, n. , p. - , 2013.
dc.identifier16057422
dc.identifier10.1117/12.2032439
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84884159195&partnerID=40&md5=4559232d59363d82b413f2381c530b9c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88277
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88277
dc.identifier2-s2.0-84884159195
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257400
dc.descriptionRecently, light microscopy-based techniques have been extended to live mammalian models leading to the development of a new imaging approach called intravital microscopy (IVM). Although IVM has been introduced at the beginning of the last century, its major advancements have occurred in the last twenty years with the development of non-linear microscopy that has enabled performing deep tissue imaging. IVM has been utilized to address many biological questions in basic research and is now a fundamental tool that provide information on tissues such as morphology, cellular architecture, and metabolic status. IVM has become an indispensable tool in numerous areas. This study presents and describes the practical aspects of IVM necessary to visualize epithelial cells of live mouse mammary gland with multiphoton techniques. © 2013 OSA-SPIE.
dc.description8797
dc.description
dc.description
dc.description
dc.descriptionThe Optical Society,The Society of Photo-Optical Instrumentation Engineers (SPIE)
dc.descriptionAmornphimoltham, P., Masedunskas, A., Weigert, R., Intravital microscopy as a tool to study drug delivery in preclinical studies (2011) Adv. Drug. Deliv. Rev., 63, pp. 119-128
dc.descriptionAndresen, V., Alexander, S., Heupel, W.M., Hirschberg, M., Hoffman, R.M., Friedl, P., Infrared multiphoton microscopy: Subcellular-resolved deep tissue imaging (2009) Curr. Opin. Biotechnol., 20 (1), pp. 54-62
dc.descriptionKedrin, D., Gligorijevic, B., Wyckoff, J., Verkhusha, V.V., Condeelis, J., Intravital imaging of metastatic behavior through a mammary imaging window (2008) Nat. Methods., 5 (12), pp. 1019-1021
dc.descriptionProvenzano, P.P., Eliceiri, K.W., Keely, P.J., Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment (2009) Clin. Exp. Metastasis, 26 (4), pp. 357-370
dc.descriptionZipfel, W.R., Williams, R.M., Webb, W.W., Nonlinear magic: Multiphoton microscopy in the biosciences (2003) Nat. Biotechnol., 21 (11), pp. 1369-1377
dc.descriptionCampagnola, P.J., Loew, L.M., Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms (2003) Nat. Biotechnol., 21 (11), pp. 1356-1360
dc.descriptionLevitt, J.A., Matthews, D.R., Ameer-Beg, S.M., Suhling, K., Fluorescence lifetime and polarization-resolved imaging in cell biology (2009) Curr. Opin. Biotechnol., 20 (1), pp. 28-36
dc.descriptionMuller, M., Zumbusch, A., Coherent anti-Stokes Raman scattering microscopy (2007) Chemphyschem, 8 (2), pp. 2156-2170
dc.descriptionVakoc, B.J., Lanning, R.M., Tyrrell, J.A., Padera, T.P., Bartlett, L.A., Stylianopoulos, T., Munn, L.L., Bouma, B.E., Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging (2009) Nat. Med, 15 (10), pp. 1219-1223
dc.descriptionDrew, P.J., Shih, A.Y., Driscoll, J.D., Knutsen, P.M., Blinder, P., Chronic optical access through a polished and reinforced thinned skull (2010) Nat. Methods, 7 (12), pp. 981-984
dc.descriptionFlusberg, B.A., Nimmerjahn, A., Cocker, E.D., Mukamel, E.A., Barretto, R.P., High-speed, miniaturized fluorescence microscopy in freely moving mice (2008) Nat. Methods., 5 (11), pp. 935-938
dc.descriptionLooney, M.R., Thornton, E.E., Sen, D., Lamm, W.J., Glenny, R.W., Stabilized imaging of immune surveillance in the mouse lung (2011) Nat. Methods., 8 (1), pp. 91-96
dc.descriptionWeigert, R., Sramkova, M., Parente, L., Amornphimoltham, P., Masedunskas, A., Intravital microscopy: A novel tool to study cell biology in living animals (2010) Histochem. Cell. Biol., 133 (5), pp. 481-491
dc.descriptionCohen, M., Georgiou, M., Stevenson, N.L., Miodownik, M., Baum, B., Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition (2010) Dev. Cell., 19 (3), pp. 78-89
dc.descriptionSerrels, A., Timpson, P., Canel, M., Schwarz, J.P., Carragher, N.O., Realtime study of E-cadherin and membrane dynamics in living animals: Implications for disease modeling and drug development (2009) Cancer. Res., 69 (7), pp. 2714-2719
dc.descriptionAdur Pelegati, J.V.B., De Thomaz, A.A., Baratti, M.O., Andrade, L.A., Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer (2012) J. Biophotonics, , doi: 10.1002/jbio.201200108
dc.descriptionAdur, J., Pelegati, V.B., De Thomaz, A.A., Baratti, M.O., Almeida, D.B., Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies (2012) PLoS One, 7, pp. e47007. , doi: 10.1371/journal.pone.0047007
dc.languageen
dc.publisher
dc.relationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.rightsfechado
dc.sourceScopus
dc.titleMultiphoton Intravital Microscopy Setup To Visualize The Mouse Mammary Gland
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución