dc.creatorBernardi M.I.B.
dc.creatorMesquita A.
dc.creatorBeron F.
dc.creatorPirota K.R.
dc.creatorDe Zevallos A.O.
dc.creatorDoriguetto A.C.
dc.creatorDe Carvalho H.B.
dc.date2015
dc.date2015-06-25T12:53:10Z
dc.date2015-11-26T15:07:07Z
dc.date2015-06-25T12:53:10Z
dc.date2015-11-26T15:07:07Z
dc.date.accessioned2018-03-28T22:17:33Z
dc.date.available2018-03-28T22:17:33Z
dc.identifier
dc.identifierPhysical Chemistry Chemical Physics. Royal Society Of Chemistry, v. 17, n. 5, p. 3072 - 3080, 2015.
dc.identifier14639076
dc.identifier10.1039/c4cp04879b
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921668391&partnerID=40&md5=c232aa6d2a6e3b8c32ef839b6668dbaf
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85435
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85435
dc.identifier2-s2.0-84921668391
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257387
dc.descriptionCeria (CeO2) is a promising dilute magnetic semiconductor. Several studies report that the intrinsic and extrinsic structural defects are responsible for room temperature ferromagnetism in undoped and transition metal doped CeO2 nanostructures; however, the nature of the kind of defect necessary to promote and stabilize the ferromagnetism in such a system is still a matter of debate. In the work presented here, nanorods from the system Ce1-xCuxO2-δ with x = 0, 0.01, 0.03, 0.05 and 0.10, with the more stable {111} surface exposed were synthesized by a microwave-assisted hydrothermal method. A very careful structure characterization confirms that the Cu in the samples assumes a majority 2+ oxidation state, occupying the Ce (Ce4+ and Ce3+) sites with no secondary phases up to x = 0.05. The inclusion of the Cu2+ in the CeO2 structure leads to the introduction of oxygen vacancies in a density proportional to the Cu2+ content. It is supposed that the spatial distribution of the oxygen vacancies follows the Cu2+ distribution by means of the formation of a defect complex consisting of Cu2+ ion and an oxygen vacancy. Superconducting quantum interference device magnetometry demonstrated a diamagnetic behavior for the undoped sample and a typical paramagnetic Curie-Weiss behavior with antiferromagnetic interactions between the Cu2+ ions for the single phase doped samples. We suggest that the presence of oxygen vacancies is not a sufficient condition to mediate ferromagnetism in the CeO2 system, and only oxygen vacancies in the surface of nanostructures would lead to such a long range magnetic order.
dc.description17
dc.description5
dc.description3072
dc.description3080
dc.descriptionLi, Y.Y., Dong, X., Gao, J.S., Hei, D.Q., Zhou, X.C., Zhang, H.Q., (2009) Physica E, 41, p. 1550
dc.descriptionTiwari, A., Bhosle, V.M., Ramachandran, S., Sudhakar, N., Narayan, J., Budak, S., Gupta, A., (2006) Appl. Phys. Lett., 88, p. 142511
dc.descriptionSundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R., (2006) Phys. Rev. B: Condens. Matter Mater. Phys., 74, p. 161306
dc.descriptionMogensen, M., Sammes, N.M., Tompsett, G.A., (2000) Solid State Ionics, 129, p. 63
dc.descriptionCoey, J.M.D., Wongsaprom, K., Alaria, J., Venkatesan, M., (2008) J. Phys. D: Appl. Phys., 41, p. 134012
dc.descriptionCoey, J.M.D., Venkatesan, M., Fitzgerald, C.B., (2005) Nat. Mater., 4, p. 173
dc.descriptionCalderon, M.J., Sarma, S.D., (2007) Ann. Phys., 322, p. 2618
dc.descriptionCoey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M., (2004) Appl. Phys. Lett., 84, p. 1332
dc.descriptionFernandes, V., Mossanek, R.J.O., Schio, P., Klein, J.J., De Oliveira, A.J.A., Ortiz, W.A., Mattoso, N., Mosca, D.H., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 80, p. 035202
dc.descriptionRumaiz, A.K., Ali, B., Ceylan, A., Boggs, M., Beebe, T., Shah, S.I., (2007) Solid State Commun., 144, p. 334
dc.descriptionHong, N.H., Sakai, J., Poirot, N., Brize, V., (2006) Phys. Rev. B: Condens. Matter Mater. Phys., 73, p. 132404
dc.descriptionYi, J.B., Lim, C.C., Xing, G.Z., Fan, H.M., Van H, L., Huang, S.L., Yang, K.S., Ding, J., (2010) Phys. Rev. Lett., 104, p. 137201
dc.descriptionShah, L.R., Wang, W.G., Zhu, H., Ali, B., Song, Y.Q., Zhang, H.W., Shah, S.I., Xiao, J.Q., (2009) J. Appl. Physiol., 105, p. 07C515
dc.descriptionDe Souza, T.E., Mesquita, A., De Zevallos, A.O., Beron, F., Pirota, K.R., Neves, P.P., Doriguetto, A.C., De Carvalho, H.B., (2013) J. Phys. Chem. C, 117, p. 13252
dc.descriptionDe Godoy, M.P.F., Mesquita, A., Avansi, W., Neves, P.P., Chitta, V.A., Ferraz, W.B., Boselli, M.A., De Carvalho, H.B., (2013) J. Alloys Compd., 555, p. 315
dc.descriptionTsunekawa, S., Sivamohan, R., Ito, S., Kasuya, A., Fukuda, T., (1999) Nanostruct. Mater., 11, p. 141
dc.descriptionWu, L.J., Wiesmann, H.J., Moodenbaugh, A.R., Klie, R.F., Zhu, Y.M., Welch, D.O., Suenaga, M., (2004) Phys. Rev. B: Condens. Matter Mater. Phys., 69, p. 125415
dc.descriptionChen, S.Y., Lu, Y.H., Huang, T.W., Yan, D.C., Dong, C.L., (2010) J. Phys. Chem. C, 114, p. 19576
dc.descriptionChen, X.B., Li, G.S., Su, Y.G., Qiu, X.Q., Li, L.P., Zou, Z.G., (2009) Nanotechnology, 20, p. 115606
dc.descriptionGe, M.Y., Wang, H., Liu, E.Z., Liu, J.F., Jiang, J.Z., Li, Y.K., Xu, Z.A., Li, H.Y., (2008) Appl. Phys. Lett., 93, p. 062505
dc.descriptionHan, X.P., Lee, J., Yoo, H.I., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 100403
dc.descriptionLiu, Y.L., Lockman, Z., Aziz, A., MacManus-Driscoll, J., (2008) J. Phys.: Condens. Matter, 20, p. 165201
dc.descriptionLi, M.J., Ge, S.H., Qiao, W., Zhang, L., Zuo, Y.L., Yan, S.M., (2009) Appl. Phys. Lett., 94, p. 152511
dc.descriptionKomarneni, S., (2003) Curr. Sci., 85, p. 1730
dc.descriptionAvgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., Matralis, H., (2002) Catal. Today, 75, p. 157
dc.descriptionBeckers, J., Rothenberg, G., (2008) Dalton Trans., p. 6573
dc.descriptionDjinovic, P., Batista, J., Levec, J., Pintar, A., (2009) Appl. Catal., A, 364, p. 156
dc.descriptionHou, D.L., Meng, H.J., Jia, L.Y., Ye, X.J., Zhou, H.J., Li, X.L., (2007) EPL, 78, p. 67001
dc.descriptionWiberg, E., Holleman, A.F., Wiberg, N., (2001) Inorganic Chemistry, , Academic Press, San Diego, Berlin, New York
dc.descriptionBarsoum, M.W., (2003) Fundamentals of Ceramics, , Taylor & Francis, New York, London
dc.descriptionNolan, M., (2011) J. Mater. Chem., 21, p. 9160
dc.descriptionChen, S.Y., Fong, K.W., Peng, T.T., Dong, C.L., Gloter, A., Yan, D.C., Chen, C.L., Chen, C.T., (2012) J. Phys. Chem. C, 116, p. 26570
dc.descriptionSlusser, P., Kumar, D., Tiwari, A., (2010) Appl. Phys. Lett., 96, p. 142506
dc.descriptionSeehra, M.S., Suri, S., Singh, V., (2012) J. Appl. Physiol., 111, p. 07B516
dc.descriptionLi, F., Zhang, C.W., Zhao, M.W., (2012) J. Appl. Physiol., 112, p. 083702
dc.descriptionFernandes, V., Schio, P., De Oliveira, A.J.A., Schreiner, W.H., Varalda, J., Mosca, D.H., (2011) J. Appl. Physiol., 110, p. 113902
dc.descriptionLarson, A.C., Dreele, R.B.V., General Structure Analysis System (GSAS) Los Alamos National Laboratory Report LAUR
dc.descriptionMichalowicz, A., Moscovici, J., Muller-Bouvet, D., Provost, K., (2009) J. Phys.: Conf. Ser., 190, p. 012034
dc.descriptionAnkudinov, A.L., Ravel, B., Conradson, S.D., Rehr, J.J., (1998) Phys. Rev. B: Condens. Matter Mater. Phys., 58, p. 7565
dc.descriptionJi, Z., Wang, X., Zhang, H., Lin, S., Meng, H., Sun, B., George, S., Zink, J.I., (2012) ACS Nano, 6, p. 5366
dc.descriptionDu, N., Zhang, H., Chen, B.G., Ma, X.Y., Yang, D.R., (2007) J. Phys. Chem. C, 111, p. 12677
dc.descriptionSayle, T.X.T., Inkson, B.J., Karakoti, A., Kumar, A., Molinari, M., Mobus, G., Parker, S.C., Sayle, D.C., (2011) Nanoscale, 3, p. 1823
dc.descriptionSayle, D.C., Maicaneanu, S.A., Watson, G.W., (2002) J. Am. Ceram. Soc., 124, p. 11429
dc.descriptionZhang, F., Jin, Q., Chan, S.W., (2004) J. Appl. Physiol., 95, p. 4319
dc.descriptionAraujo, V.D., Avansi, W., De Carvalho, H.B., Moreira, M.L., Longo, E., Ribeiro, C., Bernardi, M.I.B., (2012) CrystEngComm, 14, p. 1150
dc.descriptionTsunekawa, S., Ishikawa, K., Li, Z.Q., Kawazoe, Y., Kasuya, A., (2000) Phys. Rev. Lett., 85, p. 3440
dc.descriptionShannon, R., (1976) Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 32, p. 751
dc.descriptionMcbride, J.R., Hass, K.C., Poindexter, B.D., Weber, W.H., (1994) J. Appl. Physiol., 76, p. 2435
dc.descriptionWang, X.Q., Rodriguez, J.A., Hanson, J.C., Gamarra, D., Martinez-Arias, A., Fernandez-Garcia, M., (2005) J. Phys. Chem. B, 109, p. 19595
dc.descriptionDohcevic-Mitrovic, Z.D., Grujic-Brojcin, M., Scepanovic, M., Popovic, Z.V., Boskovic, S., Matovic, B., Zinkevich, M., Aldinger, F., (2006) J. Phys.: Condens. Matter, 18, p. S2061
dc.descriptionChrzanowski, J., Irwin, J.C., (1989) Solid State Commun., 70, p. 11
dc.descriptionFernandes, V., Schio, P., De Oliveira, A.J.A., Ortiz, W.A., Fichtner, P., Amaral, L., Graff, I.L., Mosca, D.H., (2010) J. Phys.: Condens. Matter, 22, p. 216004
dc.descriptionNachimuthu, P., Shih, W.C., Liu, R.S., Jang, L.Y., Chen, J.M., (2000) J. Solid State Chem., 149, p. 408
dc.descriptionShahin, A.M., Grandjean, F., Long, G.J., Schuman, T.P., (2005) Chem. Mater., 17, p. 315
dc.descriptionVitova, T., Hormes, J., Peithmann, K., Woike, T., (2008) Phys. Rev. B: Condens. Matter Mater. Phys., 77, p. 144103
dc.descriptionAl-Ebraheem, A., Goettlicher, J., Geraki, K., Ralph, S., Farquharson, M.J., (2010) X-Ray Spectrom., 39, p. 332
dc.descriptionHasnain, S.S., (1991) Report on the International Workshops on Standards and Criteria in XAFS. X-ray Absorption Fine Structure: Proceedings of the VI International Conference on X-ray Absorption Fine Structures, , Ellis Horwood New York
dc.descriptionOhashi, T., Yamazaki, S., Tokunaga, T., Arita, Y., Matsui, T., Harami, T., Kobayashi, K., (1998) Solid State Ionics, 113, p. 559
dc.descriptionBera, P., Priolkar, K.R., Sarode, P.R., Hegde, M.S., Emura, S., Kumashiro, R., Lalla, N.P., (2002) Chem. Mater., 14, p. 3591
dc.descriptionConesa, J.C., (1995) Surf. Sci., 339, p. 337
dc.descriptionSkorodumova, N.V., Simak, S.I., Lundqvist, B.I., Abrikosov, I.A., Johansson, B., (2002) Phys. Rev. Lett., 89, p. 166601
dc.descriptionHuang, K.Q., Feng, M., Goodenough, J.B., (1998) J. Am. Ceram. Soc., 81, p. 357
dc.descriptionSen, S., Avila-Paredes, H.J., Kim, S., (2008) J. Mater. Chem., 18, p. 3915
dc.descriptionWei, X., Pan, W., Cheng, L.F., Li, B., (2009) Solid State Ionics, 180, p. 13
dc.descriptionDutta, P., Pal, S., Seehra, M.S., Shi, Y., Eyring, E.M., Ernst, R.D., (2006) Chem. Mater., 18, p. 5144
dc.descriptionSpalek, J., Lewicki, A., Tarnawski, Z., Furdyna, J.K., Galazka, R.R., Obuszko, Z., (1986) Phys. Rev. B: Condens. Matter Mater. Phys., 33, p. 3407
dc.descriptionKittel, C., (1996) Introduction to Solid State Physics, , Wiley, New York, Chichester
dc.descriptionChe, M., Védrine, J.C., (2012) Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, , Wiley-VCH, Weinheim
dc.descriptionKolesnik, S., Dabrowski, B., Mais, J., (2004) J. Appl. Physiol., 95, p. 2582
dc.descriptionAlawadhi, H., Miotkowski, I., Lewicki, A., Ramdas, A.K., Miotkowska, S., McElfresh, M., (2002) J. Phys.: Condens. Matter, 14, p. 4611
dc.descriptionHeiman, D., Shapira, Y., Foner, S., Khazai, B., Kershaw, R., Dwight, K., Wold, A., (1984) Phys. Rev. B: Condens. Matter Mater. Phys., 29, p. 5634
dc.descriptionGaj, J.A., Planel, R., Fishman, G., (1979) Solid State Commun., 29, p. 435
dc.descriptionShapira, Y., Foner, S., Ridgley, D.H., Dwight, K., Wold, A., (1984) Phys. Rev. B: Condens. Matter Mater. Phys., 30, p. 4021
dc.descriptionSati, P., Deparis, C., Morhain, C., Schafer, S., Stepanov, A., (2007) Phys. Rev. Lett., 98, p. 137204
dc.descriptionDenissen, C.J.M., Nishihara, H., Vangool, J.C., Dejonge, W.J.M., (1986) Phys. Rev. B: Condens. Matter Mater. Phys., 33, p. 7637
dc.descriptionKeating, P.R.L., Scanlon, D.O., Morgan, B.J., Galea, N.M., Watson, G.W., (2012) J. Phys. Chem. C, 116, p. 2443
dc.descriptionZhang, T.M., Li, J., Li, H., Li, Y., Shen, W., (2009) Catal. Today, 148, p. 179
dc.descriptionSi, R., Flytzani-Stephanopoulos, M., (2008) Angew. Chem., Int. Ed., 47, p. 2884
dc.descriptionSkarman, B., Nakayama, T., Grandjean, D., Benfield, R.E., Olsson, E., Niihara, K., Wallenberg, L.R., (2002) Chem. Mater., 14, p. 3686
dc.descriptionLundberg, M., Skarman, B., Wallenberg, L.R., (2004) Microporous Mesoporous Mater., 69, p. 187
dc.descriptionZhou, K., Wang, X., Sun, X., Peng, Q., Li, Y., (2005) J. Catal., 229, p. 206
dc.languageen
dc.publisherRoyal Society of Chemistry
dc.relationPhysical Chemistry Chemical Physics
dc.rightsaberto
dc.sourceScopus
dc.titleThe Role Of Oxygen Vacancies And Their Location In The Magnetic Properties Of Ce1-xcuxo2-δ Nanorods
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución