dc.creatorFerreira De Lima Neto D.
dc.creatorBonafe C.F.S.
dc.creatorArns C.W.
dc.date2014
dc.date2015-06-25T18:06:10Z
dc.date2015-11-26T15:06:59Z
dc.date2015-06-25T18:06:10Z
dc.date2015-11-26T15:06:59Z
dc.date.accessioned2018-03-28T22:17:23Z
dc.date.available2018-03-28T22:17:23Z
dc.identifier
dc.identifierViral Immunology. , v. 27, n. 2, p. 60 - 74, 2014.
dc.identifier8828245
dc.identifier10.1089/vim.2013.0088
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84896790448&partnerID=40&md5=a2e0e5e0a76d04cfba81eb38a829bd13
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88210
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88210
dc.identifier2-s2.0-84896790448
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257350
dc.descriptionIn this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP. © 2014 Mary Ann Liebert, Inc.
dc.description27
dc.description2
dc.description60
dc.description74
dc.descriptionAl Moudallal, Z., Briand, J.P., Van Regenmortel, M.H., Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus (1982) EMBO J, 1, pp. 1005-1010
dc.descriptionAltschuh, D., Al Moudallal, Z., Briand, J.P., Van Regenmortel, M.H.V., Immunochemical studies of tobacco mosaic virus - VI. Attempts to localize viral epitopes with monoclonal antibodies (1985) Molecular Immunology, 22 (3), pp. 329-337. , DOI 10.1016/0161-5890(85)90169-5
dc.descriptionAltschuh, D., Van Regenmortel, M.H.V., Localization of antigenic determinants of a viral protein by inhibition of enzyme-linked immunosorbent assay (ELISA) with tryptic peptides (1982) Journal of Immunological Methods, 50 (1), pp. 99-108. , DOI 10.1016/0022-1759(82)90307-6
dc.descriptionAnderer, F.A., Preparation and properties of an artificial antigen immunologically related to tobacco mosaic virus (1963) Biochim Biophys Acta, 71, pp. 246-248
dc.descriptionBendahmane, M., Koo, M., Karrer, E., Beachy, R.N., Display of epitopes on the surface of tobacco mosaic virus: Impact of charge and isoelectric point of the epitope on virus-host interactions (1999) Journal of Molecular Biology, 290 (1), pp. 9-20. , DOI 10.1006/jmbi.1999.2860
dc.descriptionBenjamini, E., Leung, C.Y., Rennick, D.M., Immunochemical studies on the tobacco mosaic virus protein (1978) Adv Exp Med Biol, 98, pp. 165-179
dc.descriptionBeutling, U., Stading, K., Stradal, T., Large-scale analysis of protein-protein interactions using cellulosebound peptide arrays (2008) Adv Biochem Eng Biotechnol, 110, pp. 115-152
dc.descriptionBhasin, M., Lata, S., Raghava, G.P., TAPPred prediction of TAP-binding peptides in antigens (2007) Methods Mol Biol, 409, pp. 381-386
dc.descriptionBispo, J.A., Bonafe, C.F., Joekes, I., Entropy and volume change of dissociation in tobacco mosaic virus probed by high pressure (2012) J Phys Chem B, 116, pp. 14817-14828
dc.descriptionBonafe, C.F.S., Araujo, J.R.V., Silva, J.L., Intermediate states of assembly in the dissociation of gastropod hemocyanin by hydrostatic pressure (1994) Biochemistry, 33 (9), pp. 2651-2660
dc.descriptionBonafe, C.F.S., Villas-Boas, M., Suarez, M.C., Silva, J.L., Reassembly of a large multisubunit protein promoted by nonprotein factors: Effects of calcium and glycerol on the association of extracellular hemoglobin (1991) Journal of Biological Chemistry, 266 (20), pp. 13210-13216
dc.descriptionBonafe, C.F.S., Vital, C.M.R., Telles, R.C.B., Goncalves, M.C., Matsuura, M.S.A., Pessine, F.B.T., Freitas, D.R.C., Vega, J., Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature (1998) Biochemistry, 37 (31), pp. 11097-11105. , DOI 10.1021/bi980349n, PII S0006296098003493
dc.descriptionCalci, K.R., Meade, G.K., Tezloff, R.C., Kingsley, D.H., High-pressure inactivation of hepatitis A virus within oysters (2005) Applied and Environmental Microbiology, 71 (1), pp. 339-343. , DOI 10.1128/AEM.71.1.339-343.2005
dc.descriptionCarmicle, S., Steede, N.K., Landry, S.J., Antigen three-dimensional structure guides the processing and presentation of helper T-cell epitopes (2007) Molecular Immunology, 44 (6), pp. 1159-1168. , DOI 10.1016/j.molimm.2006.06.014, PII S0161589006002318
dc.descriptionCroft, N.P., Smith, S.A., Wong, Y.C., Kinetics of antigen expression and epitope presentation during virus infection (2013) PLoS Pathog, 9, pp. e1003129
dc.descriptionDai, G., Carmicle, S., Kalaya Steede, N., Landry, S.J., Structural basis for helper T-cell and antibody epitope immunodominance in bacteriophage T4 Hsp10. Role of disordered loops (2002) Journal of Biological Chemistry, 277 (1), pp. 161-168. , DOI 10.1074/jbc.M102259200
dc.descriptionDai, G., Steede, N.K., Landry, S.J., Allocation of helper T-cell epitope immunodominance according to threedimensional structure in the human immunodeficiency virus type i envelope glycoprotein gp120 (2001) J Biol Chem, 276, pp. 41913-41920
dc.descriptionDaniel, S., Brusic, V., Caillat-Zucman, S., Petrovsky, N., Harrison, L., Riganelli, D., Sinigaglia, F., Van Endert, P.M., Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules (1998) Journal of Immunology, 161 (2), pp. 617-624
dc.descriptionMilton De, R.C.L., Van Regenmortel, M.H.V., Immunochemical studies of tobacco mosaic virus. III. Demonstration of five antigenic regions in the protein sub-unit (1979) Molecular Immunology, 16 (3), pp. 179-184. , DOI 10.1016/0161-5890(79)90143-3
dc.descriptionDekker, E.L., Porta, C., Van Regenmortel, M.H., Limitations of different ELISA procedures for localizing epitopes in viral coat protein subunits (1989) Arch Virol, 105, pp. 269-286
dc.descriptionDe Lima Neto, D.F., Stach-Machado, D.R., Spilki, F.R., Mattoso, J., Bonafe, C.F.S., Epitope mapping of tobacco mosaic virus capsid protein: Prediction and experimental data from spot Synthesis (2013) Mol Biol, 2, p. 18
dc.descriptionDiez-Rivero, C.M., Chenlo, B., Zuluaga, P., Quantitative modeling of peptide binding to TAP using support vector machine (2010) Proteins, 78, pp. 63-72
dc.descriptionDuraes-Carvalho, R., Souza, A.R., Martins, L.M., Effect of high hydrostatic pressure on Aeromonas hydrophila AH 191 growth in milk (2012) J Food Sci, 77, pp. M417-M424
dc.descriptionEmmerich, N.P.N., Nussbaum, A.K., Stevanovic, S., Priemer, M., Toes, R.E.M., Rammensee, H.-G., Schild, H., The human 26 S and 20 S proteasomes generate overlapping but different sets of peptide fragments from a model protein substrate (2000) Journal of Biological Chemistry, 275 (28), pp. 21140-21148. , DOI 10.1074/jbc.M000740200
dc.descriptionEngland, J.L., Haran, G., Role of solvation effects in protein denaturation: From thermodynamics to single molecules and back (2011) Annu Rev Phys Chem, 62, pp. 257-277
dc.descriptionFerreira, E., Mendes, Y.S., Silva, J.L., Effects of hydrostatic pressure on the stability and thermostability of poliovirus: A new method for vaccine preservation (2009) Vaccine, 27, pp. 5332-5337
dc.descriptionFrank, R., Overwin, H., SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes (1996) Methods Mol Biol, 66, pp. 149-169
dc.descriptionGarcia-Boronat, M., Diez-Rivero, C.M., Reinherz, E.L., PVS: A web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery (2008) Nucleic Acids Res, 36, pp. W35-41
dc.descriptionGayan, E., Condon, S., Alvarez, I., Effect of pressureinduced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and Staphylococcus aureus by high hydrostatic pressure (2013) Appl Environ Microbiol, 79, pp. 4041-4047
dc.descriptionGrey, H.M., Ruppert, J., Vitiello, A., Class i MHC-peptide interactions: Structural requirements and functional implications (1995) Cancer Surv, 22, pp. 37-49
dc.descriptionHeremans, K., High pressure effects on proteins and other biomolecules (1982) Annu Rev Biophys Bioeng, 11, pp. 1-21
dc.descriptionHeremans, K., Smeller, L., Protein structure and dynamics at high pressure1 (1998) Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1386 (2), pp. 353-370. , DOI 10.1016/S0167-4838(98)00102-2, PII S0167483898001022
dc.descriptionHeremans, L., Zeyen, T., Management of a cracked Acrysof intraocular lens during implantation (1998) Case Report. Bull Soc Belge Ophtalmol, 270, pp. 13-15
dc.descriptionHopp, T.P., Woods, K.R., Prediction of protein antigenic determinants from amino acid sequences (1981) Proceedings of the National Academy of Sciences of the United States of America, 78 (6), pp. 3824-3828. , DOI 10.1073/pnas.78.6.3824
dc.descriptionHubbard, S.J., Beynon, R.J., Thornton, J.M., Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures (1998) Protein Engineering, 11 (5), pp. 349-359
dc.descriptionHubbard, S.J., Eisenmenger, F., Thornton, J.M., Modeling studies of the change in conformation required for cleavage of limited proteolytic sites (1994) Protein Science, 3 (5), pp. 757-768
dc.descriptionKarplus, P.A., Schulz, G.E., Prediction of chain flexibility in proteins. A tool for the selection of peptide antigens (1985) Naturwissenschafren, 72, p. 2
dc.descriptionKim, Y., Sette, A., Peters, B., Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource (2011) J Immunol Methods, 374, pp. 62-69
dc.descriptionKolaskar, A.S., Tongaonkar, P.C., A semi-empirical method for prediction of antigenic determinants on protein antigens (1990) FEBS Lett, 276, pp. 172-174
dc.descriptionKyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character of a protein (1982) J Mol Biol, 157, pp. 105-132
dc.descriptionLou, F., Neetoo, H., Li, J., Lack of correlation between virus barosensitivity and the presence of a viral envelope during inactivation of human rotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressure processing (2011) Appl Environ Microbiol, 77, pp. 8538-8547
dc.descriptionLundegaard, C., Lamberth, K., Harndahl, M., NetMHC-3.0: Accurate web accessible predictions of human, mouse and monkey MHC class i affinities for peptides of length 8-11 (2008) Nucleic Acids Res, 36, pp. W509-512
dc.descriptionNeefjes, J., Jongsma, M.L., Paul, P., Towards a systems understanding of MHC class i and MHC class II antigen presentation (2011) Nat Rev Immunol, 11, pp. 823-836
dc.descriptionOger, P.M., Daniel, I., Picard, A., In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure (2010) Ann NY Acad Sci, 1189, pp. 113-120
dc.descriptionPellequer, J.L., Westhof, E., Van Regenmortel, M.H., Predicting location of continuous epitopes in proteins from their primary structures (1991) Methods Enzymol, 203, pp. 176-201
dc.descriptionPontes, L., Cordeiro, Y., Giongo, V., Villas-Boas, M., Barreto, A., Araujo, J.R., Silva, J.L., Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein VP4 (2001) Journal of Molecular Biology, 307 (5), pp. 1171-1179. , DOI 10.1006/jmbi.2001.4512
dc.descriptionRennick, D.M., Morrow, P.R., Benjamini, E., Immunological studies with tobacco mosaic virus protein: Differential activation of B cell subpopulations (1982) Adv Exp Med Biol, 150, pp. 201-208
dc.descriptionRoomp, K., Antes, I., Lengauer, T., Predicting MHC class i epitopes in large datasets (2010) BMC Bioinformatics, 11, p. 90
dc.descriptionSanchez, G., Aznar, R., Martinez, A., Inactivation of human and murine norovirus by high-pressure processing (2011) Foodborne Pathog Dis, 8, pp. 249-253
dc.descriptionSantos, J.L., Aparicio, R., Joekes, I., Different urea stoichiometries between the dissociation and denaturation of tobacco mosaic virus as probed by hydrostatic pressure (2008) Biophys Chem, 134, pp. 214-224
dc.descriptionSantos, J.L.R., Bispo, J.A.C., Landini, G.F., Bonafe, C.F.S., Proton dependence of tobacco mosaic virus dissociation by pressure (2004) Biophysical Chemistry, 111 (1), pp. 53-61. , DOI 10.1016/j.bpc.2004.04.003, PII S0301462204001139
dc.descriptionSchlosser, G., Mezo, G., Kiss, R., Vass, E., Majer, Z., Feijlbrief, M., Perczel, A., Hudecz, F., Synthesis, solution structure analysis and antibody binding of cyclic epitope peptides from glycoprotein D of Herpes simplex virus type I (2003) Biophysical Chemistry, 106 (2), pp. 155-171. , DOI 10.1016/S0301-4622(03)00187-X
dc.descriptionSilva, J.L., Villas-Boas, M., Bonafe, C.F.S., Meirelles, N.C., Anomalous pressure dissociation of large protein aggregates. Lack of concentration dependence and irreversibility at extreme degrees of dissociation of extracellular hemoglobin (1989) Journal of Biological Chemistry, 264 (27), pp. 15863-15868
dc.descriptionSoutullo, A., Santi, M.N., Perin, J.C., Beltramini, L.M., Borel, I.M., Frank, R., Tonarelli, G.G., Systematic epitope analysis of the p26 EIAV core protein (2007) Journal of Molecular Recognition, 20 (4), pp. 227-237. , DOI 10.1002/jmr.825
dc.descriptionTenzer, S., Stoltze, L., Schonfisch, B., Dengjel, J., Muller, M., Stevanovic, S., Rammensee, H.-G., Schild, H., Quantitative Analysis of Prion-Protein Degradation by Constitutive and Immuno-20S Proteasomes Indicates Differences Correlated with Disease Susceptibility (2004) Journal of Immunology, 172 (2), pp. 1083-1091
dc.descriptionThai, R., Moine, G., Desmadril, M., Servent, D., Tarride, J.-L., Menez, A., Leonetti, M., Antigen stability controls antigen presentation (2004) Journal of Biological Chemistry, 279 (48), pp. 50257-50266. , DOI 10.1074/jbc.M405738200
dc.descriptionToes, R.E.M., Nussbaum, A.K., Degermann, S., Schirle, M., Emmerich, N.P.N., Kraft, M., Laplace, C., Schild, H., Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products (2001) Journal of Experimental Medicine, 194 (1), pp. 1-12. , DOI 10.1084/jem.194.1.1
dc.descriptionVan Regenmortel, M.H., The antigenicity of tobacco mosaic virus (1999) Philos Trans R Soc Lond B Biol Sci, 354, pp. 559-568
dc.descriptionVan Regenmortel, M.H., Altschuh, D., Klug, A., Influence of local structure on the location of antigenic determinants in tobacco mosaic virus protein (1986) Ciba Found Symp, 119, pp. 76-92
dc.descriptionWarren, R.L., Holt, R.A., A census of predicted mutational epitopes suitable for immunologic cancer control (2010) Hum Immunol, 71, pp. 245-254
dc.descriptionWingfield, P.T., Stahl, S.J., Thomsen, D.R., Homa, F.L., Booy, F.P., Trus, B.L., Steven, A.C., Hexon-only binding of VP26 reflects differences between the hexon and penton conformations of VP5, the major capsid protein of herpes simplex virus (1997) Journal of Virology, 71 (12), pp. 8955-8961
dc.descriptionZhang, Q., Wang, P., Kim, Y., Immune epitope database analysis resource (IEDB-AR) (2008) Nucleic Acids Res, 36, pp. W513-518
dc.languageen
dc.publisher
dc.relationViral Immunology
dc.rightsfechado
dc.sourceScopus
dc.titleInfluence Of High Hydrostatic Pressure On Epitope Mapping Of Tobacco Mosaic Virus Coat Protein
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución