Artículos de revistas
Kinase Inhibitor Profile For Human Nek1, Nek6, And Nek7 And Analysis Of The Structural Basis For Inhibitor Specificity
Registro en:
Molecules. Mdpi Ag, v. 20, n. 1, p. 1176 - 1191, 2015.
14203049
10.3390/molecules20011176
2-s2.0-84921488255
Autor
Moraes E.C.
Meirelles G.V.
Honorato R.V.
De Souza T.A.C.B.D.
De Souza E.E.
Murakami M.T.
De Oliveira P.S.L.
Kobarg J.
Institución
Resumen
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Ä262-1258)-(T162A), Isogranulatimide for hNek6(S206A), and GSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors. 20 1 1176 1191 Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor Miklos, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Fleischmann, W., Comparative genomics of the eukaryotes (2000) Science, 287, pp. 2204-2215 Johnson, L.N., Lowe, E.D., Noble, M.E., Owen, D.J., The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases (1998) FEBS Lett., 430, pp. 1-11 Hanks, S.K., Eukaryotic protein kinases (1991) Curr. Opin. Struct. Biol., 1, pp. 369-383 Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massagué, J., Pavletich, N.P., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex (1995) Nature, 376, pp. 313-320 Yamaguchi, H., Hendrickson, W.A., Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation (1996) Nature, 384, pp. 484-489 Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H., Goldsmith, E.J., Activation mechanism of the MAP kinase ERK2 by dual phosphorylation (1997) Cell, 90, pp. 859-869 Hubbard, S.R., Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog (1997) EMBO J, 16, pp. 5572-5581 Fry, A.M., O'Regan, L., Sabir, S.R., Bayliss, R., Cell cycle regulation by the NEK family of protein kinases (2012) J. Cell Sci., 125, pp. 4423-4433 Meirelles, G.V., Perez, A.M., Souza, E.E., Basei, F.L., Papa, P.F., Melo Hanchuk, T.D., Cardoso, V.B., Kobarg, J., "Stop Ne(c)king around": How systems biology can help to characterize the functions of Nek family kinases from cell cycle regulation to DNA damage response (2014) World J. Biol. Chem., 5, pp. 141-160 Fry, A.M., Mayor, T., Meraldi, P., Stierhof, Y.D., Tanaka, K., Nigg, E.A., C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2 (1998) J. Cell Biol., 141, pp. 1563-1574 Quarmby, L.M., Mahjoub, M.R., Caught nek-ing: Cilia and centrioles (2005) J. Cell Sci., 118, pp. 5161-5169 Meirelles, G.V., Silva, J.C., Mendonça, Y.A., Ramos, C.H., Torriani, I.L., Kobarg, J., Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain (2011) BMC Struct. Biol., 11, p. 12 Belham, C., Roig, J., Caldwell, J.A., Aoyama, Y., Kemp, B.E., Comb, M., Avruch, J., A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases (2003) J. Biol. Chem., 278, pp. 34897-34909 Yin, M.J., Shao, L., Voehringer, D., Smeal, T., Jallal, B., The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis (2003) J. Biol. Chem., 278, pp. 52454-52460 Yissachar, N., Salem, H., Tennenbaum, T., Motro, B., Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression (2006) FEBS Lett., 580, pp. 6489-6495 Kim, S., Lee, K., Rhee, K., NEK7 is a centrosomal kinase critical for microtubule nucleation (2007) Biochem. Biophys. Res.Commun., 360, pp. 56-62 Roig, J., Mikhailov, A., Belham, C., Avruch, J., Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression (2002) Genes Dev., 16, pp. 1640-1658 Upadhya, P., Birkenmeier, E.H., Birkenmeier, C.S., Barker, J.E., Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 217-221 Liu, S., Lu, W., Obara, T., Kuida, S., Lehoczky, J., Dewar, K., Drummond, I.A., Beier, D.R., A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish (2002) Development, 129, pp. 5839-5846 Chen, J., Li, L., Zhang, Y., Yang, H., Wei, Y., Zhang, L., Liu, X., Yu, L., Interaction of Pin1 with Nek6 and characterization of their expression correlation in Chinese hepatocellular carcinoma patients (2006) Biochem. Biophys. Res. Commun., 341, pp. 1059-1065 Chen, Y., Chen, P.L., Chen, C.F., Jiang, X., Riley, D.J., Never-in mitosis related kinase 1 functions in DNA damage response and checkpoint control (2008) Cell Cycle, 7, pp. 3194-3201 Lee, M.Y., Kim, H.J., Kim, M.A., Jee, H.J., Kim, A.J., Bae, Y.S., Park, J.I., Yun, J., Nek6 is involved in G2/M phase cell cycle arrest through DNA damage induced phosphorylation (2008) Cell Cycle, 7, pp. 2705-2709 Innocenti, P., Cheung, K.M., Solanki, S., Mas-Droux, C., Rowan, F., Yeoh, S., Boxall, K., Hardy, T., Design of potent and selective hybrid inhibitors of the mitotic kinase Nek2: Structure-activity relationship, structural biology, and cellular activity (2012) J. Med. Chem., 55, pp. 3228-3241 Solanki, S., Innocenti, P., Mas-Droux, C., Boxall, K., Barillari, C., Van Montfort, R.L., Aherne, G.W., Hoelder, S., Benzimidazole inhibitors induce a DFG-out conformation of never in mitosis gene A-related kinase 2 (Nek2) without binding to the back pocket and reveal a nonlinear structure-activity relationship (2011) J. Med. Chem., 54, pp. 1626-1639 Whelligan, D.K., Solanki, S., Taylor, D., Thomson, D.W., Cheung, K.M., Boxall, K., Mas-Droux, C., Grummitt, C.G., Aminopyrazine inhibitors binding to an unusual inactive conformation of the mitotic kinase Nek2: SAR and structural characterization (2010) J. Med. Chem., 53, pp. 7682-7698 Srinivasan, P., ChellaPerumal, P., Sudha, A., Discovery of novel inhibitors for Nek6 protein through homology model assisted structure based virtual screening and molecular docking approaches (2014) Sci. World J., 2014. , ID: 967873 Rellos, P., Ivins, F.J., Baxter, J.E., Pike, A., Nott, T.J., Parkinson, D.M., Das, S., Shen, Q.Y., Structure and regulation of the human Nek2 centrosomal kinase (2007) J. Biol. Chem., 282, pp. 6833-6842 Westwood, I., Cheary, D.M., Baxter, J.E., Richards, M.W., Van Montfort, R.L., Fry, A.M., Bayliss, R., Insights into the conformational variability and regulation of human Nek2 kinase (2009) J. Mol. Biol, 386, pp. 476-485 Richards, M.W., O'Regan, L., Mas-Droux, C., Blot, J.M., Cheung, J., Hoelder, S., Fry, A.M., Bayliss, R., An autoinhibitory tyrosine motif in the cell-cycleregulated Nek7 kinase is released through binding of Nek9 (2009) Mol. Cell, 36, pp. 560-570 Geromichalos, G.D., Importance of molecular computer modeling in anticancer drug development (2007) J. Buon., 12, pp. S101-S118 Vedadi, M., Niesen, F.H., Allali-Hassani, A., Fedorov, O.Y., Finerty, P.J., Jr., Wasney, G.A., Yeung, R., Berglund, H., Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 15835-15840 Lengauer, T., Rarey, M., Computational methods for biomolecular docking (1996) Curr. Opin. Struct. Biol., 6, pp. 402-406 Fedorov, O., Marsden, B., Pogacic, V., Rellos, P., Müller, S., Bullock, A.N., Schwaller, J., Knapp, S., A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 20523-20528 Roberge, M., Berlinck, R.G., Xu, L., Anderson, H.J., Lim, L.Y., Curman, D., Stringer, C.M., Vincent, I., High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide (1998) Cancer Res, 58, pp. 5701-5706 Jiang, X., Zhao, B., Britton, R., Lim, L.Y., Leong, D., Sanghera, J.S., Zhou, B.B., Roberge, M., Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide (2004) Mol. Cancer Ther., 3, pp. 1221-1227 De Castro, E., Sigrist, C.J.A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., Hulo, N., ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins (2006) Nucleic Acids Res., 34, pp. W362-W365 Gavrin, L.K., Saiah, E., Approaches to discover non-ATP site kinase inhibitors (2013) Med. Chem. Commun., 4, pp. 41-51 Oliveira, S.H., Ferraz, F.A., Honorato, R.V., Xavier-Neto, J., Sobreira, T.J., De Oliveira, P.S., KVFinder: Steered identification of protein cavities as a PyMOL plugin (2014) BMC Bioinform., 15, p. 197 Meirelles, G.V., Lanza, D.C.F., Silva, J.C., Bernachi, J.S., Leme, A.F.P., Kobarg, J., Characterization of hNek6 Interactome Reveals an Important Role for Its Short N-Terminal Domain and Colocalization with Proteins at the Centrosome (2010) J. Proteome Res., 9, pp. 6298-6316 Trott, O., Olson, A.J., AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading (2010) J. Comput. Chem., 31, pp. 455-461