Actas de congresos
ℋ2 Guaranteed Cost Computation Of Discretized Uncertain Continuous-time Systems
Registro en:
9781479932726
Proceedings Of The American Control Conference. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 5073 - 5078, 2014.
7431619
10.1109/ACC.2014.6858764
2-s2.0-84905706998
Autor
Braga M.F.
Morais C.F.
Tognetti E.S.
Oliveira R.C.L.F.
Peres P.L.D.
Institución
Resumen
This paper proposes a new discretization technique with constant sampling time for time-invariant systems with uncertain parameters belonging to a polytopic domain. The aim is to provide an equivalent discrete-time representation of the continuous-time system whose ℋ2 guaranteed cost is an upper bound for the ℋ2 worst case norm of the original system. The resulting discrete-time model is described in terms of homogeneous polynomial matrices obtained by Taylor series expansion of degree ℓ. The discretization residual error, associated to the chosen approximation degree, is represented by additive norm-bounded uncertain terms. As a second contribution, new linear matrix inequality (LMI) relaxations for the computation of ℋ2 guaranteed costs for discrete-time systems with polynomial dependence on the uncertain parameter and additive norm-bounded uncertainties are proposed. A numerical experiment shows that the ℋ2 costs of the discretized system become tighter to the continuous-time ones as the order in the Taylor series expansion, the degrees in the Lyapunov function and the Pólya's relaxation level increase. © 2014 American Automatic Control Council.
5073 5078 Boeing,et al.,GE Global Research,Honeywell,MathWorks,Mitsubishi Ackermann, J., (1993) Robust Control: Systems with Uncertain Physical Parameters, , London, UK: Springer Verlag Shieh, L.S., Wang, W., Chen, G., Discretization of cascaded continuous-time controllers and uncertain systems (1998) Circ. Syst. Signal Process., 17 (5), pp. 591-611. , October Oliveira, R.C.L.F., Peres, P.L.D., A convex optimization procedure to compute H2 and H ∞ norms for uncertain linear systems in polytopic domains (2008) Optim. Control Appl. Meth., 29 (4), pp. 295-312. , July/August Palhares, R.M., Takahashi, R.H.C., Peres, P.L.D., H∞ and H2 guaranteed costs computation for uncertain linear systems (1997) Int. J. Syst. Sci., 28 (2), pp. 183-188. , February Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., (1994) Linear Matrix Inequalities in System and Control Theory, , Philadelphia, PA: SIAM Studies in Applied Mathematics Zhou, K., Doyle, J.C., Glover, K., (1996) Robust and Optimal Control, , Upper Saddle River, NJ, USA: Prentice Hall Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B., State space solutions to the standard H2 and H ∞ control problems (1989) IEEE Trans. Autom. Control, 34 (8), pp. 831-847. , August Ogata, K., (1995) Discrete-time Control Systems, , Upper Saddle River, NJ, USA: Prentice-Hall International, Inc Hetel, L., Daafouz, J., Iung, C., Analysis and control of LTI and switched systems in digital loops via an event-based modelling (2008) Int. J. Control, 81 (7), pp. 1125-1138. , July Kothare, M.V., Balakrishnan, V., Morari, M., Robust constrained model predictive control using linear matrix inequalities (1996) Automatica, 32 (10), pp. 1361-1379. , October Lee, S., Won, S., Model Predictive Control for linear parameter varying systems using a new parameter dependent terminal weighting matrix (2006) IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, E89-A (8), pp. 2166-2172 Wada, N., Saito, K., Saeki, M., Model predictive control for linear parameter varying systems using parameter dependent Lyapunov function (2006) IEEE Trans. Circuits & Syst. II: Exp. Briefs, 53 (12), pp. 1446-1450. , December Jungers, M., Oliveira, R.C.L.F., Peres, P.L.D., MPC for LPV systems with bounded parameter variations (2011) Int. J. Control, 84, pp. 24-36. , January Braga, M.F., Morais, C.F., Tognetti, E.S., Oliveira, R.C.L.F., Peres, P.L.D., A new procedure for discretization and state feedback control of uncertain linear systems (2013) Proc. 52nd IEEE Conf. Decision Control, pp. 6397-6402. , Florence, Italy, December Hara, S., Yamamoto, Y., Fujioka, H., Modern and classical analysis/synthesis methods in sampled-data control - A brief overview with numerical examples (1996) Proc. 35th IEEE Conf. Decision Control, pp. 1251-1256. , Kobe, Japan, December Chen, T., Francis, B.A., (1995) Optimal Sampled-data Control Systems, , London, UK: Springer-Verlag Souza, M., Deaecto, G.S., Geromel, J.C., Daafouz, J., Selftriggered linear quadratic networked control (2013) Optim. Control Appl. Meth., , http://dx.doi.org/10.1002/oca.2085 Löfberg, J., YALMIP: A toolbox for modeling and optimization in MATLAB (2004) Proc. 2004 IEEE Int. Symp. on Comput. Aided Control Syst. Des., pp. 284-289. , Taipei, Taiwan, September Sturm, J.F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (1999) Optim. Method Softw., 11 (1-4), pp. 625-653. , http://sedumi.ie.lehigh.edu Gonçalves, E.N., Palhares, R.M., Takahashi, R.H.C., Mesquita, R.C., New approach to robust D-stability analysis of linear timeinvariant systems with polytope-bounded uncertainty (2006) IEEE Trans. Autom. Control, 51 (10), pp. 1709-1714. , October Gonçalves, E.N., Palhares, R.M., Takahashi, R.H.C., Mesquita, R.C., H2 and H∞ ε-guaranteed cost computation of uncertain linear systems (2007) IET Control Theory & Appl., 1 (1), pp. 201-209. , January