dc.creator | Piva B. | |
dc.creator | De Souza C.C. | |
dc.creator | Frota Y. | |
dc.creator | Simonetti L. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:04:13Z | |
dc.date | 2015-11-26T15:06:33Z | |
dc.date | 2015-06-25T18:04:13Z | |
dc.date | 2015-11-26T15:06:33Z | |
dc.date.accessioned | 2018-03-28T22:17:00Z | |
dc.date.available | 2018-03-28T22:17:00Z | |
dc.identifier | | |
dc.identifier | Rairo - Operations Research. , v. 48, n. 2, p. 211 - 233, 2014. | |
dc.identifier | 3990559 | |
dc.identifier | 10.1051/ro/2014008 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84900574211&partnerID=40&md5=7d9696a755c16f69027e0dbd7a6fd88f | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/88140 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/88140 | |
dc.identifier | 2-s2.0-84900574211 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1257259 | |
dc.description | The problem of finding structures with minimum stabbing number has received considerable attention from researchers. Particularly, [10] study the minimum stabbing number of perfect matchings (mspm), spanning trees (msst) and triangulations (mstr) associated to set of points in the plane. The complexity of the mstr remains open whilst the other two are known to be . This paper presents integer programming (ip) formulations for these three problems, that allowed us to solve them to optimality through ip branch-and-bound (b&b) or branch-and-cut (b&c) algorithms. Moreover, these models are the basis for the development of Lagrangian heuristics. Computational tests were conducted with instances taken from the literature where the performance of the Lagrangian heuristics were compared with that of the exact b&b and b&c algorithms. The results reveal that the Lagrangian heuristics yield solutions with minute, and often null, duality gaps for instances with several hundreds of points in small computation times. To our knowledge, this is the first computational study ever reported in which these three stabbing problems are considered and where provably optimal solutions are given. © 2014 EDP Sciences, ROADEF, SMAI. | |
dc.description | 48 | |
dc.description | 2 | |
dc.description | 211 | |
dc.description | 233 | |
dc.description | Agarwal, P., Aronov, B., Suri, S., Stabbing triangulations by lines in 3D (1995) Proceedings of the Eleventh Annual Symposium on Computational Geometry, SCG, 95, pp. 267-276. , New York, NY, USA. ACM | |
dc.description | Beasley, J., Lagrangean relaxation (1993) Modern Heuristic Techniques for Combinatorial Problems, pp. 243-303. , McGraw-Hill | |
dc.description | Beirouti, R., Snoeyink, J., Implementations of the LMT heuristic for minimum weight triangulation (1998) Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG, 98, pp. 96-105. , New York, NY, USA ACM | |
dc.description | De Berg, M., Van Kreveld, M., Rectilinear decompositions with low stabbing number (1994) Information Processing Letters, 52 (4), pp. 215-221. , DOI 10.1016/0020-0190(94)90129-5 | |
dc.description | De Loera, J.A., Hosten, S., Santos, F., Sturmfels, B., The polytope of all triangulations of a point configuration (1996) Documenta Math., 1, pp. 103-119 | |
dc.description | Demaine, E., Mitchell, J., O'Rourke, J., (2010) The Open Problems Project, , http://maven.smith.edu/Eorourke/TOPP, Available online (acessed in January) | |
dc.description | Dickerson, M.T., Montague, M.H., A (usually) connected subgraph of the minimum weight triangulation (1996) Proceedings of the 12th Annual ACM Symposyum on Computational Geometry, pp. 204-213 | |
dc.description | Edmonds, J., Maximum matching and a polyhedron with 0,1-vertices (1965) J. Res. Nat. Bur. Stand. B, 69, pp. 125-130 | |
dc.description | Fekete, S., Lubbecke, M., Meijer, H., Minimizing the stabbing number of matchings, trees, and triangulations (2004) SODA, pp. 437-446. , edited by J. Munro. SIAM | |
dc.description | Fekete, S., Lubbecke, M., Meijer, H., Minimizing the stabbing number of matchings, trees, and triangulations (2008) Discrete Comput. Geometry, 40, pp. 595-621 | |
dc.description | Fischetti, M., Gonzalez, J.J.S., Toth, P., Solving the Orienteering Problem through branch-and-cut (1998) INFORMS Journal on Computing, 10 (2), pp. 133-148 | |
dc.description | Groetschel, M., Holland, O., Solving matching problems with linear programming (1985) Mathematical Programming, 33 (3), pp. 243-259 | |
dc.description | Koch, T., Martin, A., Solving Steiner tree problems in graphs to optimality (1998) Networks, 33, pp. 207-232 | |
dc.description | Kolmogorov, V., Blossom V: A new implementation of a minimum cost perfect matching algorithm (2009) Math. Program. Comput., 1, pp. 43-67 | |
dc.description | Magnanti, T.L., Wolsey, L.A., Optimal trees (1995) Handbooks in Operations Research and Management Science, 7, pp. 503-615 | |
dc.description | Mitchell, J., O'Rourke, J., Computational geometry (2001) SIGACT News, 32, pp. 63-72 | |
dc.description | Mitchell, J., Packer, E., Computing geometric structures of low stabbing number in the plane (2007) Proc. 17th Annual Fall Workshop on Comput. Geometry and Visualization, , IBM Watson | |
dc.description | Mulzer, W., (2011), http://page.mi.fu-berlin.de/mulzer/pubs/mwtsoftware/old/ipelets/ LMTSkeleton.tar.gz, Index of/mEœulzer/pubs/mwtsoftware/old/ipelets Available online (accessed in March)Mulzer, W., Rote, G., Minimum-weight triangulation is NP-hard (2008) J. ACM, 55, pp. 1-11 | |
dc.description | Nunes, A.P., Uma abordagem de programação inteira para o problema da triangulação de custo mínimo (1997) In Portuguese, , Master's thesis, Institute of Computing, University of Campinas, Campinas, Brazil | |
dc.description | Padberg, M.W., Rao, M.R., Odd minimum cut-sets and b-matchings (1982) Math. Oper. Res., 7, pp. 67-80 | |
dc.description | Piva, B., De Souza, C.C., The minimum stabbing triangulation problem: IP models and computational evaluation (2012) ISCO, pp. 36-47 | |
dc.description | Reinelt, G., (2011), http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95, TSPLIB. Available online (acessed in March)Shewchuk, J.R., Stabbing Delaunay tetrahedralizations (2002) Discrete and Comput. Geometry, 32, p. 343 | |
dc.description | Solomon, M., (2011) VRPTW Benchmark Problems, , http://w.cba.neu.edu/Emsolomon/problems.htm, Available online (acessed in August) | |
dc.description | Toth, C.D., Orthogonal subdivisions with low stabbing numbers (2005) Lecture Notes in Computer Science, 3608, pp. 256-268. , Algorithms and Data Structures: 9th International Workshop, WADS 2005. Proceedings | |
dc.description | Wolsey, L.A., (1998) Integer Programming, , John Wiley & Sons | |
dc.language | en | |
dc.publisher | | |
dc.relation | RAIRO - Operations Research | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Integer Programming Approaches For Minimum Stabbing Problems | |
dc.type | Artículos de revistas | |