Artículos de revistas
The Use Of Modified Electrodes By Hybrid Systems Gold Nanoparticles/mn-porphyrin In Electrochemical Detection Of Cysteine
Registro en:
Synthetic Metals. Elsevier Ltd, v. 198, n. , p. 335 - 339, 2014.
3796779
10.1016/j.synthmet.2014.10.024
2-s2.0-84909636669
Autor
Gallo M.C.
Pires B.M.
Toledo K.C.F.
Jannuzzi S.A.V.
Arruda E.G.R.
Formiga A.L.B.
Bonacin J.A.
Institución
Resumen
Monitoring of biomarkers can be used to early diagnosis of diseases. Changes in levels of cysteine can indicate several disorders, because of this, development of suitable sensors are essential to welfare of people. Herein it was described the electrochemical response of a hybrid system modified electrode composed by gold nanoparticles and manganese meso-tetra(pentafluorophenyl) porphyrin for the sensing of cysteine. For this purpose, fluorine tin oxide-coated glass (FTO) electrodes were chosen as substrate due to their low cost and easily modifying surface. The hybrid system was deposited on the FTO surface using a self-assembly strategy and all experiments were performed at pH 7.0. The obtained modified electrode has shown good response for cysteine oxidation in amperometric studies with figures of merit comparable to other sensors described in literature. 198
335 339 Wei, F., Patel, P., Liao, W., Chaudhry, K., Zhang, L., Arellano-Garcia, M., Hu, S., Wong, D.T., Electrochemical sensor for multiplex biomarkers detection (2009) Clin. Cancer Res., 15, pp. 4446-4452 Shahrokhian, S., Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode (2001) Anal. Chem., 73, pp. 5972-5978 Goodman, M.T., Mcduffie, K., Hernandez, B., Wilkens, L.R., Selhub, J., Vitamin B (12) and cysteine as markers of cervical dysplasia (2000) Cancer, 89, pp. 376-382 Chen, X., Zhou, Y., Peng, X., Yoon, J., Fluorescent and colorimetric probes for detection of thiols (2010) Chem. Soc. Rev., 39, pp. 2120-2135 Lee, J.-S., Ulmann, P.A., Han, M.S., Mirkin, C.A., A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine (2008) Nano Lett., 8, pp. 529-533 Corrêa, C.C., Jannuzzi, S.A.V., Santhiago, M., Timm, R.A., Formiga, A.L.B., Kubota, L.T., Modified electrode using multi-walled carbon nanotubes and a metallopolymer for amperometric detection of L-cysteine (2013) Electrochim. Acta, 113, pp. 332-339 Spãtaru, N., Sarada, B.V., Popa, E., Tryk, D.A., Fujishima, A., Voltammetric determination of L-cysteine at conductive diamond electrodes (2001) Anal. Chem., 73, pp. 514-519 Wang, J., Electrochemical biosensors: Towards point-of-care cancer diagnostics (2006) Biosens. Bioelectron., 21, pp. 1887-1892 Collman, J.P., Chien, A.S., Eberspacher, T.A., Zhong, M., Brauman, J.I., Competitive reaction of axial ligands during biomimetic oxygenations (2000) Inorg. Chem., 39, pp. 4625-4629 Mensing, J.P., Wisitsoraat, A., Tuantranont, A., Kerdcharoen, T., Inkjet-printed solgel films containing metal phthalocyanines/porphyrins for opto-electronic nose applications (2013) Sensors Actuat. B Chem., 176, pp. 428-436 Vlascici, D., Pruneanu, S., Olenic, L., Pogacean, F., Ostafe, V., Chiriac, V., Pica, E.M., Fagadar-Cosma, E., Manganese(III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations (2010) Sensors (Basel), 10, pp. 8850-8864 Wu, Y., Luo, S., Chen, L., Manganese porphyrin functionalized graphene and its application on dimethoate electrochemical sensor (2014) Adv. Mater. Res., 850-851, pp. 152-155 Kuwahara, Y., Akiyama, T., Sunao, Y., Construction of gold nanoparticle-ruthenium(II) tris(2, 2′-bipyridine) self-assembled multistructures and their photocurrent responses (2001) Thin Solid Films, 393, pp. 273-277 Pillay, J., Ozoemena, K.I., Tshikhudo, R.T., Moutloali, R.M., Monolayer-protected clusters of gold nanoparticles: Impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection (2010) Langmuir, 26, pp. 9061-9168 Toma, S.H., Bonacin, J.A., Araki, K., Toma, H.E., Controlled stabilization and flocculation of gold nanoparticles by means of 2-pyrazin-2-ylethanethiol and pentacyanidoferrate(II) complexes (2007) Eur. J. Inorg. Chem., 2007, pp. 3356-3364 Mao, L., Yuan, R., Chai, Y., Zhuo, Y., Yang, X., Yuan, S., Multi-walled carbon nanotubes and Ru(bpy) 3(2+)/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor (2010) Talanta, 80, pp. 1692-1697 De Oliveira, K.M., Dos Santos, T.C.C., Dinelli, L.R., Marinho, J.Z., Lima, R.C., Bogado, A.L., Aggregates of gold nanoparticles with complexes containing ruthenium as modifiers in carbon paste electrodes (2013) Polyhedron, 50, pp. 410-417 Lindsey, J.S., Wagner, R.W., Investigation of the synthesis of ortho-substituted tetraphenylporphyrins (1989) J. Org. Chem., 54, pp. 828-836 Kadish, K.M., Han, B.C., Franzen, M.M., Syntheses and spectroscopic characteri- zation of and (T (p-Me2N) F4PP) M where T (p-Me2N) F4PP Is the Dianion of porphyrin and MCo(II), Cu(II), or Ni(I1). Structures of (TF5PP) Co A (1990) J. Am. Chem. Soc., pp. 8364-8368I Mohajer, D., Jahanbani, M., A UV-vis study of the effects of alcohols on formation and stability of Mn(por)(O)(OAc) complexes (2012) Spectrochim. Acta. A Mol. Biomol. Spectrosc., 91, pp. 360-364 Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., Turkevich method for gold nanoparticle synthesis revisited (2006) J. Phys. Chem. B, 110, pp. 15700-15707 Britton, H.T., Robinson, R.A., CXCVIII - Universal buger solutions and the dissociation constant of veronal (1923) J. Chem. Soc., pp. 1456-1462 Smith, K.M., Syntheses and chemistry of porphyrins (2000) J. Porphyrins Phthalocyanines, 4, pp. 319-324 Valicsek, Z., Horváth, O., Application of the electronic spectra of porphyrins for analytical purposes: The effects of metal ions and structural distortions (2013) Microchemical J., 107, pp. 47-62 Fratoddi, I., Battocchio, C., Polzonetti, G., Sciubba, F., Delfini, M., Russo, M.V., A porphyrin-bridged pd dimer complex stabilizes gold nanoparticles (2011) Eur. J. Inorg. Chem., 2011, pp. 4906-4913 Chen, S.-M., The electrocatalytic reactions of cysteine and cystine by water-soluble iron porphyrin, manganese porphyrin and iron(II) phenanthrolines (1997) Electrochim. Acta, 42, pp. 1663-1673 Yang, W., Gooding, J.J., Hibbert, D.B., Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper (2001) J. Electro Anal. Chem., 516, pp. 10-16 Stevenson, T.P.C., Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold (1951) Discuss. Faraday Soc., 11, p. 55 Salimi, A., Hallaj, R., Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: Applications to amperometric detection of thiocytosine, L-cysteine and glutathione (2005) Talanta, 66, pp. 967-975 Nekrassova, O., Lawrence, N.S., Compton, R.G., Electrochemically initiated catalytic oxidation of 5-thio-2-nitrobenzoic acid (tnba) in the presence of thiols at a boron doped diamond electrode: Implications for total thiol detection (2003) Electroanalysis, 15, pp. 1655-1660 Amini, M.K., Khorasani, J.H., Khaloo, S.S., Tangestaninejad, S., Cobalt(II) salophen-modified carbon-paste electrode for potentiometric and voltammetric determination of cysteine (2003) Anal. Biochem., 320, pp. 32-38 Majd, S.M., Teymourian, H., Salimi, A., Fabrication of an electrochemical L-cysteine sensor based on graphene nanosheets decorated manganese oxide nanocomposite modi fied glassy carbon electrode (2013) Electroanalysis, 25, pp. 2201-2210 Santhiago, M., Lima, P.R., Santos, W., De, J.R., Kubota, L.T., An amperometric sensor for L-cysteine based on nanostructured platform modified with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) (2010) Sensors Actuat. B Chem., 146, pp. 213-220 Razmi, H., Heidari, H., Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine (2009) Anal. Biochem., 388, pp. 15-22 Zhang, Y., Yang, A., Zhang, X., Zhao, H., Li, X., Yuan, Z., Highly selective and sensitive biosensor for cysteine detection based on in situ synthesis of gold nanoparticles/graphene nanocomposites (2013) Colloids Surf., A: Physicochem. Eng. Aspects, 436, pp. 815-822