dc.creator | Arriola E.R. | |
dc.creator | Szpigel S. | |
dc.creator | Timoteo V.S. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:03:59Z | |
dc.date | 2015-11-26T15:06:18Z | |
dc.date | 2015-06-25T18:03:59Z | |
dc.date | 2015-11-26T15:06:18Z | |
dc.date.accessioned | 2018-03-28T22:16:48Z | |
dc.date.available | 2018-03-28T22:16:48Z | |
dc.identifier | | |
dc.identifier | Physics Letters, Section B: Nuclear, Elementary Particle And High-energy Physics. Elsevier, v. 735, n. , p. 149 - 156, 2014. | |
dc.identifier | 3702693 | |
dc.identifier | 10.1016/j.physletb.2014.06.032 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84902662517&partnerID=40&md5=97ebfbd88582574e66621a0cc7cb692b | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/88097 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/88097 | |
dc.identifier | 2-s2.0-84902662517 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1257213 | |
dc.description | On a finite momentum grid with N integration points p n and weights wn (n = 1, ..., N) the Similarity Renormalization Group (SRG) with a given generator G unitarily evolves an initial interaction with a cutoff λ on energy differences, steadily driving the starting Hamiltonian in momentum space Hn,m0=pn2δn,m+Vn,m to a diagonal form in the infrared limit (λ→0), Hn,mG,λ→0=Eπ(n)δn,m, where π(n) is a permutation of the eigenvalues E n which depends on G. Levinson's theorem establishes a relation between phase-shifts δ(p n) and the number of bound-states, n B, and reads δ(p1) - δ(p N) = n Bπ. We show that unitarily equivalent Hamiltonians on the grid generate reaction matrices which are compatible with Levinson's theorem but are phase-inequivalent along the SRG trajectory. An isospectral definition of the phase-shift in terms of an energy-shift is possible but requires in addition a proper ordering of states on a momentum grid such as to fulfill Levinson's theorem. We show how the SRG with different generators G induces different isospectral flows in the presence of bound-states, leading to distinct orderings in the infrared limit. While the Wilson generator induces an ascending ordering incompatible with Levinson's theorem, the Wegner generator provides a much better ordering, although not the optimal one. We illustrate the discussion with the nucleon-nucleon (NN) interaction in the S01 and S13 channels. © 2014. | |
dc.description | 735 | |
dc.description | | |
dc.description | 149 | |
dc.description | 156 | |
dc.description | Bogner, S., Furnstahl, R., Perry, R., Similarity renormalization group for nucleon-nucleon interactions (2007) Phys. Rev. C, 75, p. 061001 | |
dc.description | Furnstahl, R., Hebeler, K., New applications of renormalization group methods in nuclear physics (2013) Rep. Prog. Phys., 76, p. 126301. , arxiv:1305.3800 | |
dc.description | Timoteo, V., Szpigel, S., Arriola, E.R., Symmetries of the similarity renormalization group for nuclear forces (2012) Phys. Rev. C, 86, p. 034002. , arxiv:1108.1162 | |
dc.description | Arriola, E.R., Timoteo, V., Szpigel, S., Nuclear symmetries of the similarity renormalization group for nuclear forces (2013) PoS, CD12, p. 106. , arxiv:1302.3978 | |
dc.description | Dainton, B., Furnstahl, R., Perry, R., Universality in similarity renormalization group evolved potential matrix elements and T-matrix equivalence (2014) Phys. Rev. C, 89, p. 014001. , arxiv:1310.6690 | |
dc.description | Perez, R.N., Amaro, J., Arriola, E.R., Coarse grained potential analysis of neutron-proton and proton-proton scattering below pion production threshold (2013) Phys. Rev. C, 88, p. 064002. , arxiv:1310.2536 | |
dc.description | Bulgac, A., Forbes, M.M., On the use of the discrete variable representation basis in nuclear physics (2013) Phys. Rev. C, 87, p. 051301. , arxiv:1301.7354 | |
dc.description | Arriola, E.R., Szpigel, S., Timoteo, V., Fixed points of the similarity renormalization group and the nuclear many-body problem (2014) Few-Body Syst., , arxiv:1310.8246 | |
dc.description | Hebeler, K., Momentum space evolution of chiral three-nucleon forces (2012) Phys. Rev. C, 85, p. 021002 | |
dc.description | Muga, J., Levine, R., Stationary scattering theories (1989) Phys. Scr., 40 (2), p. 129 | |
dc.description | Kukulin, V.I., Pomerantsev, V.N., Rubtsova, O.A., Discrete representation of the spectral shift function and the multichannel s-matrix (2009) JETP Lett., 90 (5), pp. 402-406 | |
dc.description | Rubtsova, O., Kukulin, V., Pomerantsev, V., Faessler, A., New approach toward a direct evaluation of the multichannel multienergy S matrix without solving the scattering equations (2010) Phys. Rev. C, 81, p. 064003 | |
dc.description | Fukuda, N., Newton, R., Energy level shifts in a large enclosure (1956) Phys. Rev., 103, pp. 1558-1564 | |
dc.description | DeWitt, B.S., Transition from discrete to continuous spectra (1956) Phys. Rev., 103, pp. 1565-1571 | |
dc.description | Luscher, M., Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states (1986) Commun. Math. Phys., 104, p. 177 | |
dc.description | Luscher, M., Two particle states on a torus and their relation to the scattering matrix (1991) Nucl. Phys. B, 354, pp. 531-578 | |
dc.description | Ma, Z.-Q., The Levinson theorem (2006) J. Phys. A, 39, pp. R625-R659 | |
dc.description | Kehrein, S., (2006) The Flow Equation Approach to Many-Particle Systems, , Springer | |
dc.description | Wegner, F., Flow-equations for Hamiltonians (1994) Ann. Phys., 506 (2), pp. 77-91 | |
dc.description | Glazek, S.D., Wilson, K.G., Perturbative renormalization group for Hamiltonians (1994) Phys. Rev. D, 49, pp. 4214-4218 | |
dc.description | Szpigel, S., Timoteo, V.S., Duraes, F., Similarity renormalization group evolution of chiral effective nucleon-nucleon potentials in the subtracted kernel method approach (2011) Ann. Phys., 326, pp. 364-405. , arxiv:1003.4663 | |
dc.description | Arriola, E.R., Szpigel, S., Timoteo, V., Implicit vs explicit renormalization and effective interactions (2014) Phys. Lett. B, 728, pp. 596-601. , arxiv:1307.1231 | |
dc.description | Arriola, E.R., Szpigel, S., Timoteo, V.S., Implicit vs explicit renormalization of the NN force (2014) Few-Body Syst., , arxiv:1310.8526 | |
dc.description | Glazek, S.D., Perry, R.J., The impact of bound states on similarity renormalization group transformations (2008) Phys. Rev. D, 78, p. 045011. , arxiv:0803.2911 | |
dc.description | Wendt, K., Furnstahl, R., Perry, R., Decoupling of spurious deep bound states with the similarity renormalization group (2011) Phys. Rev. C, 83, p. 034005. , arxiv:1101.2690 | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.relation | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | The Infrared Limit Of The Srg Evolution And Levinson's Theorem | |
dc.type | Artículos de revistas | |