dc.creatorArriola E.R.
dc.creatorSzpigel S.
dc.creatorTimoteo V.S.
dc.date2014
dc.date2015-06-25T18:03:59Z
dc.date2015-11-26T15:06:18Z
dc.date2015-06-25T18:03:59Z
dc.date2015-11-26T15:06:18Z
dc.date.accessioned2018-03-28T22:16:48Z
dc.date.available2018-03-28T22:16:48Z
dc.identifier
dc.identifierPhysics Letters, Section B: Nuclear, Elementary Particle And High-energy Physics. Elsevier, v. 735, n. , p. 149 - 156, 2014.
dc.identifier3702693
dc.identifier10.1016/j.physletb.2014.06.032
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84902662517&partnerID=40&md5=97ebfbd88582574e66621a0cc7cb692b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88097
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88097
dc.identifier2-s2.0-84902662517
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257213
dc.descriptionOn a finite momentum grid with N integration points p n and weights wn (n = 1, ..., N) the Similarity Renormalization Group (SRG) with a given generator G unitarily evolves an initial interaction with a cutoff λ on energy differences, steadily driving the starting Hamiltonian in momentum space Hn,m0=pn2δn,m+Vn,m to a diagonal form in the infrared limit (λ→0), Hn,mG,λ→0=Eπ(n)δn,m, where π(n) is a permutation of the eigenvalues E n which depends on G. Levinson's theorem establishes a relation between phase-shifts δ(p n) and the number of bound-states, n B, and reads δ(p1) - δ(p N) = n Bπ. We show that unitarily equivalent Hamiltonians on the grid generate reaction matrices which are compatible with Levinson's theorem but are phase-inequivalent along the SRG trajectory. An isospectral definition of the phase-shift in terms of an energy-shift is possible but requires in addition a proper ordering of states on a momentum grid such as to fulfill Levinson's theorem. We show how the SRG with different generators G induces different isospectral flows in the presence of bound-states, leading to distinct orderings in the infrared limit. While the Wilson generator induces an ascending ordering incompatible with Levinson's theorem, the Wegner generator provides a much better ordering, although not the optimal one. We illustrate the discussion with the nucleon-nucleon (NN) interaction in the S01 and S13 channels. © 2014.
dc.description735
dc.description
dc.description149
dc.description156
dc.descriptionBogner, S., Furnstahl, R., Perry, R., Similarity renormalization group for nucleon-nucleon interactions (2007) Phys. Rev. C, 75, p. 061001
dc.descriptionFurnstahl, R., Hebeler, K., New applications of renormalization group methods in nuclear physics (2013) Rep. Prog. Phys., 76, p. 126301. , arxiv:1305.3800
dc.descriptionTimoteo, V., Szpigel, S., Arriola, E.R., Symmetries of the similarity renormalization group for nuclear forces (2012) Phys. Rev. C, 86, p. 034002. , arxiv:1108.1162
dc.descriptionArriola, E.R., Timoteo, V., Szpigel, S., Nuclear symmetries of the similarity renormalization group for nuclear forces (2013) PoS, CD12, p. 106. , arxiv:1302.3978
dc.descriptionDainton, B., Furnstahl, R., Perry, R., Universality in similarity renormalization group evolved potential matrix elements and T-matrix equivalence (2014) Phys. Rev. C, 89, p. 014001. , arxiv:1310.6690
dc.descriptionPerez, R.N., Amaro, J., Arriola, E.R., Coarse grained potential analysis of neutron-proton and proton-proton scattering below pion production threshold (2013) Phys. Rev. C, 88, p. 064002. , arxiv:1310.2536
dc.descriptionBulgac, A., Forbes, M.M., On the use of the discrete variable representation basis in nuclear physics (2013) Phys. Rev. C, 87, p. 051301. , arxiv:1301.7354
dc.descriptionArriola, E.R., Szpigel, S., Timoteo, V., Fixed points of the similarity renormalization group and the nuclear many-body problem (2014) Few-Body Syst., , arxiv:1310.8246
dc.descriptionHebeler, K., Momentum space evolution of chiral three-nucleon forces (2012) Phys. Rev. C, 85, p. 021002
dc.descriptionMuga, J., Levine, R., Stationary scattering theories (1989) Phys. Scr., 40 (2), p. 129
dc.descriptionKukulin, V.I., Pomerantsev, V.N., Rubtsova, O.A., Discrete representation of the spectral shift function and the multichannel s-matrix (2009) JETP Lett., 90 (5), pp. 402-406
dc.descriptionRubtsova, O., Kukulin, V., Pomerantsev, V., Faessler, A., New approach toward a direct evaluation of the multichannel multienergy S matrix without solving the scattering equations (2010) Phys. Rev. C, 81, p. 064003
dc.descriptionFukuda, N., Newton, R., Energy level shifts in a large enclosure (1956) Phys. Rev., 103, pp. 1558-1564
dc.descriptionDeWitt, B.S., Transition from discrete to continuous spectra (1956) Phys. Rev., 103, pp. 1565-1571
dc.descriptionLuscher, M., Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states (1986) Commun. Math. Phys., 104, p. 177
dc.descriptionLuscher, M., Two particle states on a torus and their relation to the scattering matrix (1991) Nucl. Phys. B, 354, pp. 531-578
dc.descriptionMa, Z.-Q., The Levinson theorem (2006) J. Phys. A, 39, pp. R625-R659
dc.descriptionKehrein, S., (2006) The Flow Equation Approach to Many-Particle Systems, , Springer
dc.descriptionWegner, F., Flow-equations for Hamiltonians (1994) Ann. Phys., 506 (2), pp. 77-91
dc.descriptionGlazek, S.D., Wilson, K.G., Perturbative renormalization group for Hamiltonians (1994) Phys. Rev. D, 49, pp. 4214-4218
dc.descriptionSzpigel, S., Timoteo, V.S., Duraes, F., Similarity renormalization group evolution of chiral effective nucleon-nucleon potentials in the subtracted kernel method approach (2011) Ann. Phys., 326, pp. 364-405. , arxiv:1003.4663
dc.descriptionArriola, E.R., Szpigel, S., Timoteo, V., Implicit vs explicit renormalization and effective interactions (2014) Phys. Lett. B, 728, pp. 596-601. , arxiv:1307.1231
dc.descriptionArriola, E.R., Szpigel, S., Timoteo, V.S., Implicit vs explicit renormalization of the NN force (2014) Few-Body Syst., , arxiv:1310.8526
dc.descriptionGlazek, S.D., Perry, R.J., The impact of bound states on similarity renormalization group transformations (2008) Phys. Rev. D, 78, p. 045011. , arxiv:0803.2911
dc.descriptionWendt, K., Furnstahl, R., Perry, R., Decoupling of spurious deep bound states with the similarity renormalization group (2011) Phys. Rev. C, 83, p. 034005. , arxiv:1101.2690
dc.languageen
dc.publisherElsevier
dc.relationPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
dc.rightsaberto
dc.sourceScopus
dc.titleThe Infrared Limit Of The Srg Evolution And Levinson's Theorem
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución