Artículos de revistas
Effects Of Partial Inhibition Of Respiratory Complex I On H2o2 Production By Isolated Brain Mitochondria In Different Respiratory States
Registro en:
Neurochemical Research. Springer New York Llc, v. 39, n. 12, p. 2419 - 2430, 2014.
3643190
10.1007/s11064-014-1446-4
2-s2.0-84912527524
Autor
Michelini L.G.B.
Benevento C.E.
Rossato F.A.
Siqueira-Santos E.S.
Castilho R.F.
Institución
Resumen
The aim of this work was to characterize the effects of partial inhibition of respiratory complex I by rotenone on H2O2 production by isolated rat brain mitochondria in different respiratory states. Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of mitochondria. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nm) and NADH-linked substrates, oxygen consumption was reduced from 45.9 ± 1.0 to 26.4 ± 2.6 nmol O2 mg−1 min−1 and from 7.8 ± 0.3 to 6.3 ± 0.3 nmol O2 mg−1 min−1 in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2 ± 1.1 to 21.0 ± 1.2 pmol H2O2 mg−1 min−1 and 56.5 ± 4.7 to 95.0 ± 11.1 pmol H2O2 mg−1 min−1 in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic mitochondria or when 1-methyl-4-phenylpyridinium ion (MPP+) was used as a respiratory complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from complex II to complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. The present results support the conclusion that partial complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions. 39 12 2419 2430 Braak, H., Ghebremedhin, E., Rüb, U., Bratzke, H., Del Tredici, K., Stages in the development of Parkinson’s disease-related pathology (2004) Cell Tissue Res, 318, pp. 121-134. , PID: 15338272 Schapira, A.H., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B., Marsden, C.D., Mitochondrial complex I deficiency in Parkinson’s disease (1989) Lancet, 1, p. 1269. , COI: 1:STN:280:DyaL1M3mtVOktQ%3D%3D, PID: 2566813 Schapira, A.H., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., Clark, J.B., Marsden, C.D., Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease (1990) J Neurochem, 55, pp. 2142-2145. , COI: 1:CAS:528:DyaK3MXpvFeltw%3D%3D, PID: 2121905 Parker, W.D., Jr., Boyson, S.J., Parks, J.K., Abnormalities of the electron transport chain in idiopathic Parkinson’s disease (1989) Ann Neurol, 26, pp. 719-723. , PID: 2557792 Schapira, A.H., Evidence for mitochondrial dysfunction in Parkinson’s disease—a critical appraisal (1994) Mov Disord, 9, pp. 125-138. , COI: 1:STN:280:DyaK2c3lsVyqug%3D%3D, PID: 8196673 Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Turnbull, D.M., High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease (2006) Nat Genet, 38, pp. 515-517. , COI: 1:CAS:528:DC%2BD28XjvVGksbs%3D, PID: 16604074 Schon, E.A., DiMauro, S., Hirano, M., Human mitochondrial DNA: roles of inherited and somatic mutations (2012) Nat Rev Genet, 13, pp. 878-890. , COI: 1:CAS:528:DC%2BC38Xhs1OgsLfO, PID: 23154810 Nicklas, W.J., Youngster, S.K., Kindt, M.V., Heikkila, R.E., MPTP, MPP+ and mitochondrial function (1987) Life Sci, 40, pp. 721-729. , COI: 1:CAS:528:DyaL2sXhtlehsbY%3D, PID: 3100899 Langston, J.W., Ballard, P., Tetrud, J.W., Irwin, I., Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis (1983) Science, 219, pp. 979-980. , COI: 1:STN:280:DyaL3s7hvF2mtg%3D%3D, PID: 6823561 Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., Greenamyre, J.T., Chronic systemic pesticide exposure reproduces features of Parkinson’s disease (2000) Nat Neurosci, 3, pp. 1301-1306. , COI: 1:CAS:528:DC%2BD3cXosVGgsbg%3D, PID: 11100151 Greenamyre, J.T., Cannon, J.R., Drolet, R., Mastroberardino, P.G., Lessons from the rotenone model of Parkinson’s disease (2010) Trends Pharmacol Sci, 31, pp. 141-142. , COI: 1:CAS:528:DC%2BC3cXjvFKksbw%3D, PID: 20096940 Tapias, V., Cannon, J.R., Greenamyre, J.T., Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson’s disease model (2010) J Neurosci Res, 88, pp. 420-427. , COI: 1:CAS:528:DC%2BD1MXhsFensb3K, PID: 19681169 Sanders, L.H., Timothy Greenamyre, J., Oxidative damage to macromolecules in human Parkinson disease and the rotenone model (2013) Free Radic Biol Med, 62, pp. 111-120. , COI: 1:CAS:528:DC%2BC3sXivF2rtbY%3D, PID: 23328732 Barrientos, A., Moraes, C.T., Titrating the effects of mitochondrial complex I impairment in the cell physiology (1999) J Biol Chem, 274, pp. 16188-16197. , COI: 1:CAS:528:DyaK1MXjs1Ons7s%3D, PID: 10347173 Chinopoulos, C., Adam-Vizi, V., Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease (2001) J Neurochem, 76, pp. 302-306. , COI: 1:CAS:528:DC%2BD3MXhtVGltr0%3D, PID: 11146003 Testa, C.M., Sherer, T.B., Greenamyre, J.T., Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures (2005) Brain Res Mol Brain Res, 134, pp. 109-118. , COI: 1:CAS:528:DC%2BD2MXisFGmur8%3D, PID: 15790535 Yadava, N., Nicholls, D.G., Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone (2007) J Neurosci, 27, pp. 7310-7317. , COI: 1:CAS:528:DC%2BD2sXot1egtLc%3D, PID: 17611283 Pöltl, D., Schildknecht, S., Karreman, C., Leist, M., Uncoupling of ATP-depletion and cell death in human dopaminergic neurons (2012) Neurotoxicology, 33, pp. 769-779. , PID: 22206971 Surmeier, D.J., Schumacker, P.T., Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease (2013) J Biol Chem, 288, pp. 10736-10741. , COI: 1:CAS:528:DC%2BC3sXlvFSiurc%3D, PID: 23086948 Votyakova, T.V., Reynolds, I.J., DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria (2001) J Neurochem, 79, pp. 266-277. , COI: 1:CAS:528:DC%2BD3MXnvFSmsrs%3D, PID: 11677254 Liu, Y., Fiskum, G., Schubert, D., Generation of reactive oxygen species by the mitochondrial electron transport chain (2002) J Neurochem, 80, pp. 780-787. , COI: 1:CAS:528:DC%2BD38Xit1Gnu7Y%3D, PID: 11948241 Sousa, S.C., Maciel, E.N., Vercesi, A.E., Castilho, R.F., Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone (2003) FEBS Lett, 543, pp. 179-183. , COI: 1:CAS:528:DC%2BD3sXjs1Crt7k%3D, PID: 12753929 Tahara, E.B., Navarete, F.D., Kowaltowski, A.J., Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation (2009) Free Radic Biol Med, 46, pp. 1283-1297. , COI: 1:CAS:528:DC%2BD1MXkt1ShsL0%3D, PID: 19245829 Starkov, A.A., Fiskum, G., Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state (2003) J Neurochem, 86, pp. 1101-1107. , COI: 1:CAS:528:DC%2BD3sXmvFait7o%3D, PID: 12911618 Kudin, A.P., Bimpong-Buta, N.Y., Vielhaber, S., Elger, C.E., Kunz, W.S., Characterization of superoxide-producing sites in isolated brain mitochondria (2004) J Biol Chem, 279, pp. 4127-4135. , COI: 1:CAS:528:DC%2BD2cXps12itg%3D%3D, PID: 14625276 Sherer, T.B., Betarbet, R., Stout, A.K., Lund, S., Baptista, M., Panov, A.V., Cookson, M.R., Greenamyre, J.T., An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage (2002) J Neurosci, 22, pp. 7006-7015. , COI: 1:CAS:528:DC%2BD38XmsF2gs7Y%3D, PID: 12177198 Sipos, I., Tretter, L., Adam-Vizi, V., Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals (2003) J Neurochem, 84, pp. 112-118. , COI: 1:CAS:528:DC%2BD3sXhtF2iug%3D%3D, PID: 12485407 Mirandola, S.R., Melo, D.R., Saito, A., Castilho, R.F., 3-nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions (2010) J Neurosci Res, 88, pp. 630-639. , COI: 1:CAS:528:DC%2BC3cXkvFGhsg%3D%3D, PID: 19795369 Rosenthal, R.E., Hamud, F., Fiskum, G., Varghese, P.J., Sharpe, S., Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine (1987) J Cereb Blood Flow Metab, 7, pp. 752-758. , COI: 1:CAS:528:DyaL1cXhtVKitbo%3D, PID: 3693430 Sims, N.R., Anderson, M.F., Isolation of mitochondria from rat brain using Percoll density gradient centrifugation (2008) Nat Protoc, 3, pp. 1228-1239. , COI: 1:CAS:528:DC%2BD1cXotFakur4%3D, PID: 18600228 Sims, N.R., Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation (1990) J Neurochem, 55, pp. 698-707. , COI: 1:CAS:528:DyaK3cXltFWrt7c%3D, PID: 2164576 Kaplan, R.S., Pedersen, P.L., Characterization of phosphate efflux pathways in rat liver mitochondria (1983) Biochem J, 212, pp. 279-288. , COI: 1:CAS:528:DyaL3sXktVWqs78%3D, PID: 6882372 Mattiasson, G., Flow cytometric analysis of isolated liver mitochondria to detect changes relevant to cell death (2004) Cytom A, 60, pp. 145-154 Robinson, J., Cooper, J.M., Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode (1970) Anal Biochem, 33, pp. 390-399. , COI: 1:CAS:528:DyaE3cXoslSqsQ%3D%3D, PID: 4314758 Tretter, L., Biagioni Angeli, E., Ardestani, M.R., Goracci, G., Adam-Vizi, V., Reversible inhibition of hydrogen peroxide elimination by calcium in brain mitochondria (2011) J Neurosci Res, 89, pp. 1965-1972. , COI: 1:CAS:528:DC%2BC3MXht1yktLjP, PID: 21541982 Ronchi, J.A., Figueira, T.R., Ravagnani, F.G., Oliveira, H.C., Vercesi, A.E., Castilho, R.F., A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities (2013) Free Radic Biol Med, 63, pp. 446-456. , COI: 1:CAS:528:DC%2BC3sXhtFyjsbnM, PID: 23747984 Long, J., Ma, J., Luo, C., Mo, X., Sun, L., Zang, W., Liu, J., Comparison of two methods for assaying complex I activity in mitochondria isolated from rat liver, brain and heart (2009) Life Sci, 85, pp. 276-280. , COI: 1:CAS:528:DC%2BD1MXptlSquro%3D, PID: 19520091 Navarro, A., Bández, M.J., Gómez, C., Repetto, M.G., Boveris, A., Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity (2010) J Bioenerg Biomembr, 42, pp. 405-412. , COI: 1:CAS:528:DC%2BC3cXhsVKkt7rF, PID: 20886364 Agarwal, B., Dash, R.K., Stowe, D.F., Bosnjak, Z.J., Camara, A.K., Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes (2014) Biochim Biophys Acta, 1837, pp. 354-365. , COI: 1:CAS:528:DC%2BC2cXhs1Gqt7g%3D, PID: 24355434 Aiuchi, T., Shirane, Y., Kinemuchi, H., Arai, Y., Nakaya, K., Nakamura, Y., Enhancement by tetraphenylboron of inhibition of mitochondrial respiration induced by 1-methyl-4-phenylpyridinium ion (MPP+) (1988) Neurochem Int, 12, pp. 525-531. , COI: 1:CAS:528:DyaL1cXksV2qs7s%3D, PID: 20501261 Ramsay, R.R., Mehlhorn, R.J., Singer, T.P., Enhancement by tetraphenylboron of the interaction of the 1-methyl-4-phenylpyridinium ion (MPP+) with mitochondria (1989) Biochem Biophys Res Commun, 159, pp. 983-990. , COI: 1:CAS:528:DyaL1MXitVOgu7c%3D, PID: 2784681 Chinta, S.J., Rane, A., Yadava, N., Andersen, J.K., Nicholls, D.G., Polster, B.M., Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria (2009) Free Radic Biol Med, 46, pp. 939-947. , COI: 1:CAS:528:DC%2BD1MXivVKgtbc%3D, PID: 19280713 Gyulkhandanyan, A.V., Pennefather, P.S., Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress (2004) J Neurochem, 90, pp. 405-421. , COI: 1:CAS:528:DC%2BD2cXmtVyrt78%3D, PID: 15228597 Figueira, T.R., Barros, M.H., Camargo, A.A., Castilho, R.F., Ferreira, J.C., Kowaltowski, A.J., Sluse, F.E., Vercesi, A.E., Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health (2013) Antioxid Redox Signal, 18, pp. 2029-2074. , COI: 1:CAS:528:DC%2BC3sXmtVyhs78%3D, PID: 23244576 Korshunov, S.S., Skulachev, V.P., Starkov, A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria (1997) FEBS Lett, 416, pp. 15-18. , COI: 1:CAS:528:DyaK2sXms1eksro%3D, PID: 9369223 Petrosillo, G., Ruggiero, F.M., Paradies, G., Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria (2003) FASEB J, 17, pp. 2202-2208. , COI: 1:CAS:528:DC%2BD3sXpvVSmtr0%3D, PID: 14656982 Zoccarato, F., Cavallini, L., Alexandre, A., Respiration-dependent removal of exogenous H2O2 in brain mitochondria: inhibition by Ca2+ (2004) J Biol Chem, 279, pp. 4166-4174. , COI: 1:CAS:528:DC%2BD2cXps12iuw%3D%3D, PID: 14634020 Lopert, P., Patel, M., Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system (2014) J Biol Chem, 289, pp. 15611-15620. , COI: 1:CAS:528:DC%2BC2cXovVehu7Y%3D, PID: 24722990 Rossignol, R., Malgat, M., Mazat, J.P., Letellier, T., Threshold effect and tissue specificity. Implication for mitochondrial cytopathies (1999) J Biol Chem, 274, pp. 33426-33432. , COI: 1:CAS:528:DyaK1MXns1ejsr4%3D, PID: 10559224 Chan, C.S., Guzman, J.N., Ilijic, E., Mercer, J.N., Rick, C., Tkatch, T., Meredith, G.E., Surmeier, D.J., ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease (2007) Nature, 447, pp. 1081-1086. , COI: 1:CAS:528:DC%2BD2sXmvFKmurY%3D, PID: 17558391 Fahn, S., Cohen, G., The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it (1992) Ann Neurol, 32, pp. 804-812. , COI: 1:STN:280:DyaK3s7htFOjtQ%3D%3D, PID: 1471873 Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H., Marsden, C.D., Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group (1992) Ann Neurol, 32, pp. S82-S87. , COI: 1:CAS:528:DyaK3sXnvVSntQ%3D%3D, PID: 1510385 Camara, A.K., Lesnefsky, E.J., Stowe, D.F., Potential therapeutic benefits of strategies directed to mitochondria (2010) Antioxid Redox Signal, 13, pp. 279-347. , COI: 1:CAS:528:DC%2BC3cXnvV2ku7s%3D, PID: 20001744 Perfeito, R., Cunha-Oliveira, T., Rego, A.C., Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse (2013) Free Radic Biol Med, 62, pp. 186-201. , COI: 1:CAS:528:DC%2BC3sXhtFCkt7nI, PID: 23743292 Brand, M.D., The sites and topology of mitochondrial superoxide production (2010) Exp Gerontol, 2010 (45), pp. 466-472 Ramsay, R.R., Krueger, M.J., Youngster, S.K., Gluck, M.R., Casida, J.E., Singer, T.P., Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase (1991) J Neurochem, 56, pp. 1184-1190. , COI: 1:CAS:528:DyaK3MXitVWgs74%3D, PID: 2002336 Gerlach, M., Riederer, P., Przuntek, H., Youdim, M.B., MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease (1991) Eur J Pharmacol, 208, pp. 273-286. , COI: 1:CAS:528:DyaK38Xnslylsg%3D%3D, PID: 1815982 Tipton, K.F., Singer, T.P., Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds (1993) J Neurochem, 61, pp. 1191-1206. , COI: 1:CAS:528:DyaK3sXms1Chsrg%3D, PID: 8376979 Bajpai, P., Sangar, M.C., Singh, S., Tang, W., Bansal, S., Chowdhury, G., Cheng, Q., Avadhani, N.G., Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: implications in Parkinson disease (2013) J Biol Chem, 288, pp. 4436-4451. , COI: 1:CAS:528:DC%2BC3sXit1Krtrk%3D, PID: 23258538 Hattori, N., Tanaka, M., Ozawa, T., Mizuno, Y., Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease (1991) Ann Neurol, 30, pp. 563-571. , COI: 1:STN:280:DyaK387mtFOntg%3D%3D, PID: 1665052 McNaught, K.S., Jenner, P., Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures (1999) J Neurochem, 73, pp. 2469-2476. , COI: 1:CAS:528:DyaK1MXns1ehu7s%3D, PID: 10582607 Schapira, A.H., Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia (1999) Biochim Biophys Acta, 1410, pp. 159-170. , COI: 1:STN:280:DyaK1M7nslCltA%3D%3D, PID: 10076024 Brown, M.R., Sullivan, P.G., Geddes, J.W., Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria (2006) J Biol Chem, 281, pp. 11658-11668. , COI: 1:CAS:528:DC%2BD28Xjslegur0%3D, PID: 16517608 Naga, K.K., Sullivan, P.G., Geddes, J.W., High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition (2007) J Neurosci, 27, pp. 7469-7475. , COI: 1:CAS:528:DC%2BD2sXnvFyhurs%3D, PID: 17626207 Lores-Arnaiz, S., Bustamante, J., Age-related alterations in mitochondrial physiological parameters and nitric oxide production in synaptic and non-synaptic brain cortex mitochondria (2011) Neuroscience, 188, pp. 117-124. , COI: 1:CAS:528:DC%2BC3MXnslKhtrk%3D, PID: 21600964 Davey, G.P., Clark, J.B., Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria (1996) J Neurochem, 66, pp. 1617-1624. , COI: 1:CAS:528:DyaK28XhslGhsL8%3D, PID: 8627318 Davey, G.P., Peuchen, S., Clark, J.B., Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration (1998) J Biol Chem, 273, pp. 12753-12757. , COI: 1:CAS:528:DyaK1cXjsVertb4%3D, PID: 9582300 Cino, M., Del Maestro, R.F., Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia (1989) Arch Biochem Biophys, 269, pp. 623-638. , COI: 1:CAS:528:DyaL1MXhtlejtb4%3D, PID: 2919886 Pryde, K.R., Hirst, J., Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer (2011) J Biol Chem, 286, pp. 18056-18065. , COI: 1:CAS:528:DC%2BC3MXmtVGju7s%3D, PID: 21393237 Treberg, J.R., Quinlan, C.L., Brand, M.D., Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I) (2011) J Biol Chem, 286, pp. 27103-27110. , COI: 1:CAS:528:DC%2BC3MXpsVOnt78%3D, PID: 21659507 Orr, A.L., Ashok, D., Sarantos, M.R., Shi, T., Hughes, R.E., Brand, M.D., Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening (2013) Free Radic Biol Med, 65C, pp. 1047-1059 Vesce, S., Kirk, L., Nicholls, D.G., Relationships between superoxide levels and delayed calcium deregulation in cultured cerebellar granule cells exposed continuously to glutamate (2004) J Neurochem, 90, pp. 683-693. , COI: 1:CAS:528:DC%2BD2cXmsFertrY%3D, PID: 15255947 Sousa, S.C., Castilho, R.F., Protective effect of melatonin on rotenone plus Ca2+-induced mitochondrial oxidative stress and PC12 cell death (2005) Antioxid Redox Signal, 7, pp. 1110-1116. , COI: 1:CAS:528:DC%2BD2MXos1eqsr4%3D, PID: 16115015 Berndt, N., Holzhütter, H.G., Bulik, S., Implications of enzyme deficiencies on the mitochondrial energy metabolism and ROS formation of neurons involved in rotenone-induced Parkinson’s disease: A model-based analysis (2013) FEBS J, 280, pp. 5080-5093. , COI: 1:CAS:528:DC%2BC3sXhsFOgsr3F, PID: 23937586