dc.creatorSantillan J.M.J.
dc.creatorFernandez van Raap M.B.
dc.creatorMendoza Zelis P.
dc.creatorCoral D.
dc.creatorMuraca D.
dc.creatorSchinca D.C.
dc.creatorScaffardi L.B.
dc.date2015
dc.date2015-06-25T12:52:59Z
dc.date2015-11-26T15:06:06Z
dc.date2015-06-25T12:52:59Z
dc.date2015-11-26T15:06:06Z
dc.date.accessioned2018-03-28T22:16:38Z
dc.date.available2018-03-28T22:16:38Z
dc.identifier
dc.identifierJournal Of Nanoparticle Research. Kluwer Academic Publishers, v. 17, n. 2, p. - , 2015.
dc.identifier13880764
dc.identifier10.1007/s11051-015-2894-8
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922648825&partnerID=40&md5=fd25d7a638c5723b94a6cb2ebbc6d1db
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85416
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85416
dc.identifier2-s2.0-84922648825
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257176
dc.descriptionWe report for the first time on the formation of self-assembled fractals of spherical Ag nanoparticles (Nps) fabricated by femtosecond pulse laser ablation of a solid silver target in water. Fractal structures grew both in two and three Euclidean dimensions (d). Ramified-fractal assemblies of 2 nm height and 5–14 μm large, decorated with Ag Nps of 3 nm size, were obtained in a 2d geometry when highly diluted drops of colloidal suspension were dried at a fast heating rate over a mica substrate. When less-diluted drops were dried at slow heating rate, isolated single Nps or rosette-like structures were formed. Fractal aggregates about 31 nm size in 3d geometry were observed in the as-prepared colloidal suspension. Electron diffraction and optical extinction spectroscopy (OES) analyses performed on the samples confirmed the presence of Ag and Ag2O. The analysis of the optical extinction spectrum, using the electrostatic approximation of Mie theory for small spheres, showed the existence of Ag bare core, Ag–Ag2O and air–Ag core–shell Nps, Ag–Ag2O being the most frequent type [69 % relative abundance (r.a.)]. Core-size and shell-thickness distribution was derived from OES. In situ scattering measurements of the Ag colloidal suspension, carried out by small-angle X-ray scattering, indicate a mass fractal composed of packaged 〈DSAXS〉 = (5 ± 1) nm particles and fractal dimension df = 2.5. Ex situ atomic force microscopy imaging displayed well-ramified structures, which, analyzed with box-counting method, yield a fractal dimension df = 1.67. The growing behavior of these 2d and 3d self-assembled fractals is consistent with the diffusion-limited aggregation model.
dc.description17
dc.description2
dc.description
dc.description
dc.descriptionBaker, S.H., Thornton, S.C., Edmonds, K.W., Maher, M.J., Norris, C., Binns, C., The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters (2000) Rev Sci Instrum, 71 (8), pp. 3178-3183
dc.descriptionBarcikowski, S., Hahn, A., Kabashin, A.V., Chichkov, B.N., Properties of nanoparticles generated during femtosecond laser machining in air and water (2007) Appl Phys A, 87 (1), pp. 47-55
dc.descriptionBen Moshe, A., Markovich, G., Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process (2011) Chem Mater, 23 (5), pp. 1239-1245
dc.descriptionBewig, L., Buck, U., Mehlmann, C., Winter, M., Seeded supersonic alkali cluster beam source with refilling system (1992) Rev Sci Instrum, 63 (8), pp. 3936-3938
dc.descriptionBohren, C.F., Huffman, D.R., (1998) Absorption and scattering of light by small particles, , Wiley, New York:
dc.descriptionCavaliere, E., Ferrini, G., Pingue, P., Gavioli, L., Fractal TiO2 nanostructures by nonthermal laser ablation ambient pressure (2013) J Phys Chem C, 117 (44), pp. 23305-23312
dc.descriptionChen, S.-H., Teixeira, J., Structure and fractal dimension of protein–detergent complexes (1986) Phys Rev Lett, 57 (20), pp. 2583-2586
dc.descriptionDesarkar, H.S., Kumbhakar, P., Mitra, A.K., One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique (2013) Laser Phys Lett, 10 (5), pp. 055903-055908
dc.descriptionDing, H.-P., Xin, G.-Q., Chen, K.-C., Zhang, M., Liu, Q., Hao, J., Liu, H.-G., Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition (2010) Colloids Surf A, 353 (2-3), pp. 166-171
dc.descriptionDong, J., Gong, J., Liu, J., Chen, M., Yan, X., The decoration of silver fractal-like nanostructure with Ag nanoparticles on the plastic slide for surface enhanced fluorescence (2012) Electrochim Acta, 60, pp. 264-268
dc.descriptionFeder, J., (1988) Fractals, , Plenum Press, New York:
dc.descriptionFernández van Raap, M.B., Mendoza Zélis, P., Coral, D.F., Torres, T.E., Marquina, C., Goya, G.F., Sánchez, F.H., Self organization in oleic acid-coated CoFe2O4 colloids: a SAXS study (2012) J Nanopart Res, 14, p. 1072
dc.descriptionFreltoft, T., Kjems, J.K., Sinha, S.K., Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering (1986) Phys Rev B, 33 (1), pp. 269-275
dc.descriptionHou, S.M., Ouyang, M., Chen, H.F., Liu, W.M., Xue, Z.Q., Wu, Q.D., Zhang, H.X., Pang, S.J., Fractal structure in the silver oxide thin film (1998) Thin Solid Films, 315 (1-2), pp. 322-326
dc.descriptionIshii, K., Amano, K., Hamakake, H., Hollow cathode sputtering cluster source for low energy deposition: deposition of Fe small clusters (1999) J Vac Sci Technol A, 17 (1), pp. 310-313
dc.descriptionJohnson, P.B., Christy, R.W., Optical constants of the noble metals (1972) Phys Rev B, 6, pp. 4370-4379
dc.descriptionKabashin, A.V., Meunier, M., Laser ablation based synthesis of nanomaterials (2006) Recent advances in laser processing of materials, pp. 1-36. , Perrière J, Millon E, Fogarassy E, (eds), Elsevier, Oxford:
dc.descriptionKittel, C., (2007) Introduction to solid state physics, , Wiley, New York:
dc.descriptionKreibig, U., Vollmer, M., (1995) Optical properties of metal clusters, , Springer, Berlin:
dc.descriptionLi, J., Du, Q., Sun, C., An improved box-counting method for image fractal dimension estimation (2009) Pattern Recognit, 42 (11), pp. 2460-2469
dc.descriptionLiu, B., Wang, M., Electrodeposition of dendritic silver nanostructures and their application as hydrogen peroxide sensor (2013) Int J Electrochem Sci, 8 (6), pp. 8572-8578
dc.descriptionParfenov, A., Gryczynski, I., Malicka, J., Geddes, C.D., Lakowicz, J.R., Enhanced fluorescence from fluorophores on fractal silver surfaces (2003) J Phys Chem B, 107 (34), pp. 8829-8833
dc.descriptionQiu, J.H., Zhou, P., Gao, X.Y., Yu, J.N., Wang, S.Y., Li, J., Zheng, Y.X., Chen, L.Y., Ellipsometric study of the optical properties of silver oxide prepared by reactive magnetron sputtering (2005) J Korean Phys Soc, 46, pp. S269-S275
dc.descriptionQiu, R., Zhang, X.L., Qiao, R., Li, Y., Kim, Y.I., Kang, Y.S., CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor (2007) Chem Mater, 19 (17), pp. 4174-4180
dc.descriptionQiu, R., Cha, H.G., Noh, H.B., Shim, Y.B., Zhang, X.L., Qiao, R., Zhang, D., Kang, Y.S., Preparation of dendritic copper nanostructures and their characterization for electroreduction (2009) J Phys Chem C, 113 (36), pp. 15891-15896
dc.descriptionQu, L., Dai, L., Novel silver nanostructures from silver mirror reaction on reactive substrates (2005) J Phys Chem B, 109 (29), pp. 13985-13990
dc.descriptionSantillán, J.M., Estudio de propiedades ópticas de materiales nanoestructurados. PhD Thesis, Facultad de Ciencias Exactas (2013) Universidad Nacional de La Plata, , http://www.hd.lhandle.net/10915/30746, UNLP, Argentina:
dc.descriptionSantillán, J.M.J., Videla, F.A., Fernández van Raap, M.B., Schinca, D.C., Scaffardi, L.B., Size dependent Cu dielectric function for plasmon spectroscopy: characterization of colloidal suspensions generated by fs laser ablation (2012) J Appl Phys, 112 (5), p. 054319
dc.descriptionSantillán, J.M.J., Videla, F.A., Fernández van Raap, M.B., Muraca, D., Scaffardi, L.B., Schinca, D.C., Influence of size-corrected bound-electron contribution on nanometric silver dielectric function Sizing through optical extinction spectroscopy (2013) J Phys D, 46 (43), p. 435301
dc.descriptionSantillán, J.M.J., Videla, F.A., Fernández van Raap, M.B., Schinca, D.C., Scaffardi, L.B., Analysis of the structure, configuration and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids (2013) J Appl Phys, 113 (13), p. 134305
dc.descriptionScaffardi, L.B., Schinca, D.C., Lester, M., Videla, F.A., Santillán, J.M.J., Abraham Ekeroth, R.M., Size-dependent optical properties of metallic nanostructures (2013) Kumar UV–vis and photoluminescence spectroscopy for nanomaterials characterization, pp. 179-229. , Challa SSR, (ed), Springer, Heidelberg:
dc.descriptionSchaefer, D.W., Martin, J.E., Wiltzius, P., Cannell, D.S., Fractal geometry of colloidal aggregates (1984) Phys Rev Lett, 52 (26), pp. 2371-2374
dc.descriptionSchultz, S., Smith, D.R., Mock, J.J., Schultz, D.A., Single-target molecule detection with nonbleaching multicolor optical immunolabels (2000) Proc Natl Acad Sci USA, 97 (3), pp. 996-1001
dc.descriptionSelvakannan, P.R., Sastry, M., Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution (2005) Chem Commun, 13, pp. 1684-1686
dc.descriptionShelke, P.B., Nguyen, V.D., Limaye, A.V., Schall, P., Controlling colloidal morphologies by critical Casimir forces (2013) Adv Mater, 25 (10), pp. 1499-1503
dc.descriptionSiekmann, H.R., Lüder, C., Faehrmann, J., Lutz, H.O., Meiwes-Broer, K.H., The pulsed arc cluster ion source (PACIS) (1991) Z Phys D, 20, pp. 417-420
dc.descriptionSingh, M., Sinha, I., Singh, A.K., Mandal, R.K., Formation of fractal aggregates during green synthesis of silver nanoparticles (2011) J Nanopart Res, 13, pp. 69-76
dc.descriptionSun, X., Hagner, M., Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temperature via a wet-chemical route (2007) Langmuir, 23 (18), pp. 9147-9150
dc.descriptionTokuyama, M., Kawasaki, K., Fractal dimensions for diffusion-limited aggregation (1984) Phys Lett A, 100 (7), pp. 337-340
dc.descriptionWagener, P., Ibrahimkutty, S., Menzel, A., Plech, A., Barcikowski, S., Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid (2013) Phys Chem Chem Phys, 15 (9), pp. 3068-3074
dc.descriptionWang, Y., Camargo, P.H.C., Skrabalak, S.E., Gu, H., Xia, Y.A., Facile, water-based synthesis of highly branched nanostructures of silver (2008) Langmuir, 24 (20), pp. 12042-12046
dc.descriptionWen, X., Xie, Y.T., Mak, M.W.C., Cheung, K.Y., Li, X.Y., Renneberg, R., Yang, S., Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications (2006) Langmuir, 22 (10), pp. 4836-4842
dc.descriptionYan, Z., Chrisey, D.B., Pulsed laser ablation in liquid for micro-/nanostructure generation (2012) J Photochem Photobiol C, 13 (3), pp. 204-223
dc.descriptionYan, Z., Bao, R., Chrisey, D.B., Generation of Ag–Ag2O complex nanostructures by excimer laser ablation of Ag in water (2013) Phys Chem Chem Phys, 15 (9), pp. 3052-3056
dc.descriptionZenkevich, A.V., Pushkin, M.A., Tronin, V.N., Troyan, V.I., Nevolin, V.N., Maximov, G.A., Filatov, D.O., Lægsgaard, E., Formation of Au fractal nanoclusters during pulsed laser deposition on highly oriented pyrolitic graphite (2002) Phys Rev B, 65, p. 073406
dc.descriptionZhou, Y., Yu, S.H., Wang, C.Y., Li, X.G., Zhu, Y.R., Chen, Z.Y., A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites (1999) Adv Mater, 11 (10), pp. 850-852
dc.languageen
dc.publisherKluwer Academic Publishers
dc.relationJournal of Nanoparticle Research
dc.rightsfechado
dc.sourceScopus
dc.titleAg Nanoparticles Formed By Femtosecond Pulse Laser Ablation In Water: Self-assembled Fractal Structures
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución