dc.creatorDe Souza T.L.
dc.creatorRossi C.D.C.R.D.S.
dc.creatorAlonso C.G.
dc.creatorGuirardello R.
dc.creatorCabral V.F.
dc.creatorFernandes-Machado N.R.C.
dc.creatorSpecchia S.
dc.creatorZabaloy M.S.
dc.creatorCardozo-Filho L.
dc.date2014
dc.date2015-06-25T18:03:46Z
dc.date2015-11-26T15:06:05Z
dc.date2015-06-25T18:03:46Z
dc.date2015-11-26T15:06:05Z
dc.date.accessioned2018-03-28T22:16:37Z
dc.date.available2018-03-28T22:16:37Z
dc.identifier
dc.identifierInternational Journal Of Hydrogen Energy. Elsevier Ltd, v. 39, n. 16, p. 8257 - 8270, 2014.
dc.identifier3603199
dc.identifier10.1016/j.ijhydene.2014.03.078
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84900333034&partnerID=40&md5=e11413d7afdcea9693d8665b3359fa86
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88066
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88066
dc.identifier2-s2.0-84900333034
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257173
dc.descriptionIn this work a thermodynamic analysis of the autothermal reforming (ATR) of methane was performed. Equilibrium calculations employing entropy maximization were performed in a wide range of oxygen to methane mole ratio (O/M), steam to methane ratio (S/M), inlet temperature (IT), and system pressure (P). The main calculated parameters were hydrogen yield, carbon monoxide formation, methane conversion, coke formation, and equilibrium temperature. Further, the optimum operating oxygen to methane feed ratio that maximizes hydrogen production, at P = 1 bar, has been calculated. The nonlinear programming problem applied to the simultaneous chemical and phase equilibrium calculation was implemented in GAMS®, using CONOPT2 solver. The maximum amount of hydrogen obtained was in the order of 3 moles of hydrogen per mole of fed methane at IT = 1000 °C, P = 1 bar, S/M = 5, and O/M = 0.18. Experimental literature data are in good agreement with calculation results obtained through proposed methodology. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
dc.description39
dc.description16
dc.description8257
dc.description8270
dc.description(2012) BP Statistical Review of World Energy June 2012, , London
dc.descriptionEnergy Agency, I., (2012) World Energy Outlook 2012, , London
dc.descriptionPetrachi, G.A., Negro, G., Specchia, S., Saracco, G., Maffettone, P.L., Specchia, V., Combining catalytic combustion and steam reforming in an innovative multifunctional reactor for on-board hydrogen production from middle distillates (2005) Ind Eng Chem Res, 44 (25), pp. 9422-9430
dc.descriptionSpecchia, S., Cutillo, A., Saracco, G., Specchia, V., Concept study on ATR and SR fuel processors for liquid hydrocarbons (2006) Ind Eng Chem Res, 45 (15), pp. 5298-5307
dc.descriptionSpecchia, S., Negro, G., Saracco, G., Specchia, V., Fuel processor based on syngas production via short-contact-time catalytic-partial-oxidation reactors (2007) Appl Catal B Environ, 70 (14), pp. 525-531
dc.descriptionLaosiripojana, N., Assabumrungrat, S., Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics (2005) Appl Catal A Gen, 290 (12), pp. 200-211
dc.descriptionHou, K., Hughes, R., The kinetics of methane steam reforming over a Ni/α-Al2O catalyst (2001) Chem Eng J, 82 (13), pp. 311-328
dc.descriptionBasini, L., Issues in H2 and synthesis gas technologies for refinery, GTL and small and distributed industrial needs (2005) Catal Today, 106 (14), pp. 34-40
dc.descriptionSouza, M.M.V.M., Schmal, M., Autothermal reforming of methane over Pt/ZrO2/Al 2O3 catalysts (2005) Appl Catal A en, 281 (12), pp. 19-24
dc.descriptionGao, J., Guo, J., Liang, D., Hou, Z., Fei, J., Zheng, X., Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO 2 supported Ni catalysts (2008) Int J Hydrogen Energy, 33 (20), pp. 5493-5500
dc.descriptionHalabi, M.H., Croon, M.H.J.M., Van Der Schaaf, J., Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer (2008) Chem Eng J, 137 (3), pp. 568-578
dc.descriptionChang, H.F., Pai, W.J., Chen, Y.J., Lin, W.H., Autothermal reforming of methane for producing high-purity hydrogen in a Pd/Ag membrane reactor (2010) Int J Hydrogen Energy, 35 (23), pp. 12986-12992
dc.descriptionAkbari, M.H., Ardakani, A.H.S., Tadbir, M.A., A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications (2011) Chem Eng J, 166 (3), pp. 1116-1125
dc.descriptionPino, L., Recupero, V., Beninati, S., Shukla, A.K., Hegde, M.S., Bera, P., Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for applications in fuel cell electric vehicles (2002) Appl Catal A Gen, 225 (12), pp. 63-75
dc.descriptionPino, L., Vita, A., Cordaro, M., Recupero, V., Hegde, M.S., A comparative study of Pt/CeO2 catalyst for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles (2003) Appl Catal A Gen, 243 (1), pp. 135-146
dc.descriptionSpecchia, S., Vella, L.D., Montini, P., Fornasiero, P., Syngas production by short contact time catalytic partial oxidation of methane (2011) Hydrogen Production: Prospects and Processes, pp. 95-139. , D.R. Honnery, P. Moriarty, Nova Science Publishers Inc. New York ISBN: 978-1-62100-246-8
dc.descriptionPrette, M., Eichner, C.H., Perrin, M., The catalytic oxidation of methane to carbon monoxide and hydrogen (1946) T Faraday Soc, 42, pp. 335-339
dc.descriptionHorn, R., Williams, K.A., Degenstein, N.J., Bitsch-Larsen, A., Dallenogare, D., Tupy, S.A., Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium (2007) J Catal, 249 (2), pp. 380-393
dc.descriptionLi, B., Maruyama, K., Nurunnabi, M., Kunimori, K., Tomishige, K., Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane (2004) Appl Catal A Gen, 275 (12), pp. 157-172
dc.descriptionLiu, T., Snyder, C., Veser, G., Catalytic partial oxidation of methane: Is a distinction between direct and indirect pathways meaningful (2007) Ind Eng Chem Res, 46 (26), pp. 9045-9052
dc.descriptionDias, J.A.C., Assaf, J.M., Autothermal reforming of methane over Ni/γ-Al2O 3 catalysts: The enhancement effect of small quantities of noble metals (2004) J Power Sources, 130 (12), pp. 106-110
dc.descriptionTakeguchi, T., Furukawa, S.N., Inoue, M., Koichi, E., Autothermal reforming of methane over Ni catalyst supported over CaO-CeO2-ZrO2 solid solution (2003) Appl Catal A Gen, 240 (12), pp. 223-233
dc.descriptionHagh, B.F., Stoichiometric analysis of autothermal fuel processing (2004) J Power Sources, 130 (12), pp. 85-94
dc.descriptionRabe, S., Truong, T.B., Vogel, F., Catalytic autothermal reforming of methane: Performance of a kW scale reformer using pure oxygen as oxidant (2007) Appl Catal A Gen, 318, pp. 54-62
dc.descriptionSantos, D.C.R.M., Madeira, L., Passos, F.B., The effect of the addition of Y2O3 to Ni/α-Al2O3 catalysts on the autothermal reforming of methane (2010) Catal Today, 149 (34), pp. 401-406
dc.descriptionLiu, S., Xiong, G., Dong, H., Yang, W., Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst (2000) Appl Catal A Gen, 202 (1), pp. 141-146
dc.descriptionLiu, Z.W., Jun, K.W., Roh, H.S., Park, S.E., Hydrogen production for fuel cells through methane reforming at low temperatures (2002) J Power Sources, 111 (2), pp. 283-287
dc.descriptionVagia, E.C., Lemonidou, A.A., Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction (2008) Int J Hydrogen Energy, 33 (10), pp. 2489-2500
dc.descriptionRodriguez, M.L., Ardissone, D.E., Pedernera, M.N., Borio, D.O., Influence of the oxygen feed distribution on the performance of a catalytic reactor for ATR of methane (2010) Catal Today, 156 (34), pp. 246-253
dc.descriptionChen, W.H., Lin, M.R., Lu, J.J., Chao, Y., Leu, T.S., Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction (2010) Int J Hydrogen Energy, 35 (21), pp. 11787-11797
dc.descriptionLi, Y., Wang, Y., Zhang, X., Mi, Z., Thermodynamic analysis of autothermal steam and CO2 reforming of methane (2008) Int J Hydrogen Energy, 33 (10), pp. 2507-2514
dc.descriptionWang, H., Wang, X., Li, M., Li, S., Wang, S., Ma, X., Thermodynamic analysis of hydrogen production from glycerol autothermal reforming (2009) Int J Hydrogen Energy, 34 (14), pp. 5683-5690
dc.descriptionMichelsen, M.L., State function based flash specifications (1999) Fluid Phase Equilibr, 158-160, pp. 617-626
dc.descriptionCastier, M., Solution of the isochoric-isoenergetic flash problem by direct entropy maximization (2009) Fluid Phase Equilibr, 276 (1), pp. 7-17
dc.descriptionRossi, C.C.R.S., Berezuk, M.E., Cardozo-Filho, L., Guirardello, R., Simultaneous calculation of chemical and phase equilibria using convexity analysis (2011) Comput Chem Eng, 35 (7), pp. 1226-1237
dc.descriptionFreitas, A.C.D., Guirardello, R., Oxidative reforming of methane for hydrogen and syntesisgás production: Thermodynamic equilibrium analysis (2012) J Nat Gas Chem, 21 (5), pp. 571-580
dc.descriptionGao, J., Hou, Z., Liu, X., Zeng, Y., Luo, M., Zheng, X., Methane autothermal reforming with CO2 and O2 to synthesis gas at the boundary between Ni and ZrO2 (2009) Int J Hydrogen Energy, 34 (9), pp. 3734-3742
dc.descriptionNurunnabi, M., Mukainakano, Y., Kado, S., Miyazawa, T., Okumura, K., Miyao, T., Oxidative steam reforming of methane under atmospheric and pressurized conditions over Pd/NiO-MgO solid solution catalysts (2006) Appl Catal A Gen, 308, pp. 1-12
dc.descriptionChoudhary, V.R., Mamman, A.S., Uphade, B.S., Steam and oxysteam reforming of methane to syngas over Co xNi1-xO supported on MgO precoated SA-5205 (2001) AIChE J, 47 (7), pp. 1632-1638
dc.descriptionReese, M.A., Turn, S.Q., Cui, H., Kinetic modeling of high pressure autothermal reforming (2010) J Power Sources, 195 (2), pp. 553-558
dc.descriptionSimeone, M., Salemme, L., Allouis, C., Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging (2008) Int J Hydrogen Energy, 33 (18), pp. 4798-4808
dc.descriptionSimeone, M., Salemme, L., Scognamiglio, D., Allouis, C., Volpicelli, G., Effect of water addition and stoichiometry variations on temperature profiles in an autothermal methane reforming reactor with Ni catalyst (2008) Int J Hydrogen Energy, 33 (4), pp. 1252-1261
dc.descriptionAyabe, S., Omoto, H., Utaka, T., Kikuchi, R., Sasaki, K., Teraoka, Y., Catalytic autothermal reforming of methane and propane over supported metal catalysts (2003) Appl Catal A Gen, 241 (12), pp. 261-269
dc.descriptionEscritori, J.C., Dantas, S.C., Soares, R.R., Hori, C.E., Methane autothermal reforming nickel-ceria-zirconia based catalysts (2009) Catal Commun, 10 (7), pp. 1090-1094
dc.descriptionSouza, A.E.A.M., Maciel, L.J.L., Filho, M.L., Abreu, C.A.M., Catalytic activity evaluation for hydrogen production via autothermal reforming of methane (2010) Catal Today, 149 (34), pp. 413-417
dc.descriptionHoang, D.L., Chan, S.H., Ding, O.L., Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support (2006) J Power Sources, 159 (2), pp. 1248-1257
dc.descriptionDantas, S.C., Escritori, J.C., Soares, R.R., Hori, C.E., Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane (2010) Chem Eng J, 156 (2), pp. 380-387
dc.descriptionDIADEM Public V. 1.2-DIPPR® - Information and Data Evaluation Manager, 2000, , Design Institute for Physical Property Data
dc.descriptionPoling, B.E., Prausnitz, J.M., O'Connell, P.J., (2000) The Properties of Gases and Liquids, , 5thed MacGraw Hill New York
dc.descriptionReid, R.C., Prausnitz, J.M., Poling, B.E., (1987) The Properties of Gases and Liquids, , 4thed MacGraw Hill New York
dc.descriptionReid, R.C., Prausnitz, J.M., Poling, B.E., (1977) The Properties of Gases and Liquids, , 3rded MacGraw Hill New York
dc.descriptionLiu, K., Song, C., Subramani, V., (2010) Hydrogen and Syngas Production and Purification Technologies, , John Wiley & Sons New Jersey
dc.descriptionSpecchia, S., Francia, C., Spinelli, P., Polymer electrolyte membrane fuel cells (2011) Electrochemical Technologies for Energy Storage and Conversion, pp. 601-670. , R.S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang, Wiley-VHC Verlag GmbH & Co., KGaA Germany. Weinheim
dc.descriptionRuiz, J.A.C., Passos, F.B., Bueno, J.M.C., Souza-Aguiar, E.F., Mattos, L.V., Noronha, F.B., Syngas production by autothermal reforming of methane on supported platinum catalysts (2008) Appl Catal A Gen, 334 (12), pp. 259-267
dc.descriptionAdhikari, S., Fernando, S., Gwaltney, S.R., To, S.D.F., Bricka, R.M., Steele, P.H., A thermodynamic analysis of hydrogen production by steam reforming of glycerol (2007) Int J Hydrogen Energy, 32 (14), pp. 2875-2880
dc.descriptionHoang, D.L., Chan, S.H., Modeling of a catalytic autothermal methane reformer for fuel cell applications (2004) Appl Catal A Gen, 268 (12), pp. 207-216
dc.descriptionVan Ness, H.C., Abbott, M.M., (1982) Classical Thermodynamics of Noneletrolyte Solutions: With Applications to Phase Equilibria, , MacGraw Hill New York
dc.descriptionSandler, S.I., (2006) Chemical, Biochemical, and Engineering Thermodynamics, p. 32. , 4th ed. John Wiley & Sons Inc
dc.languageen
dc.publisherElsevier Ltd
dc.relationInternational Journal of Hydrogen Energy
dc.rightsfechado
dc.sourceScopus
dc.titleThermodynamic Analysis Of Autothermal Reforming Of Methane Via Entropy Maximization: Hydrogen Production
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución